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1 Introduction

It is a common occurrence that seemingly homogeneous goods and services are available for sale at

different prices. If the market is competitive, the discrepancy from “the law of one price”indicates

some frictions or other forms of ineffi ciencies may exist. One classic explanation of this phenomenon

attributes the existence of price dispersion to consumer search costs Stigler (1961). Many theoretical

search models have been proposed to show that price dispersion can arise in equilibrium; with the

earlier theoretical literature focusing on models with minimal or even no ex-ante heterogeneity. The

survey of Baye, Morgan, and Scholten (2006) gives an account as well as examples of other sources

of price dispersion.

An influential paper by Burdett and Judd (1983) shows that a continuous pricing rule can be

generated by a mixed strategy Nash equilibrium in a fixed sample1 search model with complete

information consisting of infinitely many identical firms and consumers. There, firms are identical

in the sense that they are known to have the same (constant) marginal cost of production and all

consumers have the same search cost. Hong and Shum (2006) develop an empirical model based

on Burdett and Judd (1983) by assuming that consumers draw search costs from some continuous

distribution. They show, using just data on prices, nonparametric identification of the firms’marginal

costs and parts of the distribution of consumer search costs. Their strategy can also be used to

identify an analogous model with finite number of firms (Moraga-González and Wildenbeest (2008)),

i.e. an oligopolistic setup, which is commonly assumed in practice. Identification of the search

distribution in these papers is only partial as parts of the support of search cost cannot be identified.

Moraga-González, Sandor and Wildenbeest (2013) show identification on the full support is possible

if additional price data from other equilibria are available.

In this paper we propose an empirical model of fixed sample search that allows for heterogeneity

across firms as well as consumers. We assume there are a finite number of firms who draw marginal

costs from some continuous distribution. Costs are private and firms compete in prices in an incom-

plete information environment. We analyze both the theoretical and empirical aspects of this model.

We make three main contributions:

(i) Provide a system of equations that characterize non-degenerate pure strategy Bayesian-Nash

equilibria (BNE) in the model via a fixed-point;

1In a fixed sample (or nonsequential) search consumers decide from the onset how many price quotes to search for.

This stands in contrast to sequential search. The two models are not nested. Morgan and Manning (1985) show the

fixed and sequential search models can be optimal in different circumstances. The fixed search model may be more

suitable, for example, in applications where time is a factor so that buyers prefer to gather information quickly. Some

recent empirical studies found that nonsequential search models provide a better approximation to consumers’search

behavior observed in real life (De Los Santos et al. (2012), Honka and Chintagunta (2017)).
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(ii) Show both the marginal cost distribution of firms and search cost distribution of consumers

can be nonparametrically identified from data on price and market share;

(iii) Propose nonparametric estimators for the primitives that achieve optimal convergence rate

uniformly on any fixed subset in the interior of the support and the rate can be made arbitrarily

close to the optimal rate when the subset expands asymptotically to the whole support.

For the ease of notation and clarity of idea, the paper focuses on the symmetric model where

products are homogeneous. We provide a generalization of this to a model of vertical differenti-

ated products as an extension. More specifically, in the context of a complete information game,

Wildenbeest (2011) incorporates vertical product differentiation components into the model in order

to explain systematic price differences between firms. He shows identification is still possible from

just prices by assuming the valuation-cost markup, which is defined as the difference between quality

and production cost, is the same for all firms, so that firms pass on the costs associated with quality

to the consumers in equilibrium. A natural extension to his idea for an incomplete information game

is to assume the cost distributions for all firms have the same shape but vary in location. In this

setting, we show our results developed for the symmetric model can then be readily generalized when

we restrict the pricing strategies for firms to be affi ne transformations of each other.

There are at least two motivations for incorporating heterogeneity amongst firms. First, the

perfect competition assumption on the supply side —i.e. a common knowledge of identical production

costs —may not be suitable for applications with a small number of firms. Another reason is that

seemingly identical products may in reality differ in an unobservable way to the consumers but

those differences were observed by the seller when she chose the price.2 In this case, a model with

heterogeneous costs can be interpreted as taking an agnostic approach on product differentiation to

approximate situations where differentiation may occur in less transparent or unobservable way.

Our model is inspired by the theoretical work by MacMinn (1980) and we generalize his frame-

work.3 MacMinn gives one of the earliest account of a search model where firms’best responses

can generate price dispersion. He assumes firms differ by drawing marginal costs from a uniform

distribution. His result is a partial equilibrium because consumer search behavior is exogenously

assumed and every consumer searches the same number of times (cf. Pereira (2005)). In contrast,

our BNE is defined by simultaneous best responses for both consumers and firms. We do not specify

any distributional assumption on the marginal costs and allow different consumers to search for a

2For example, online sellers of second-hand books or music records (e.g. on Amazon Marketplace or Discogs.com)

tend to possess private information about the actual condition of the item that goes beyond the description provided

in the offer because they physically own the product.
3Similarly to us, Benabou (1993) considers a search model with bilateral heterogeneity. He does not, however, have

any results on nonsequential search.
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different number of prices. Therefore the decision problem for firms in our model resembles a first-

price procurement auction where each bidder has to form an expectation on the number and identity

of her competitors. The similarities between search and auction models have been well documented

in the theoretical literature, e.g. see McAfee and McMillan (1998) in a mechanism design context.

Other applications include some job search models from the labor literature.4

Our identification strategy is different to what is used to identify complete information models. In

particular, Hong and Shum (2006) use price distribution to identify consumers’search distribution

and the firms’common marginal cost by exploiting the constant profit condition imposed by the

mixed strategy condition. We propose to identify an incomplete information model with market

shares of firms in addition to prices. This idea is analogous to linking market shares to choice

probabilities, which is the starting point for the identification argument used in the literature on

on demand for differentiated products (see Berry and Haile (2014)). We show that market shares

generally relate to the equilibrium proportions of consumer search linearly in expectation conditional

on price, so that the distribution of consumer search costs can be recovered from solving a linear

equation. We then use it to help identify the marginal cost distribution for firms. Our approach here

is similar to how Guerre, Perrigne and Vuong (2000, hereafter GPV) identify the distribution of the

bidder’s latent valuation in a first-price auction model. In particular, we derive the inverse of the

equilibrium pricing function explicitly and use it to recover firms’latent costs from observed prices.

Our identification results are constructive. We show the parameters of interest can be written

explicitly in terms of the joint distribution of observed variables. Subsequently we propose to estimate

them using sample counterparts that does not require any numerical optimization. On the demand

(consumers’) side the consumer optimal behavior is characterized by the distribution of frequency

of search that is a solution to a linear least squares problem where the regressors are written in

terms of the cumulative density function (cdf) of price. It can then be computed using an OLS

closed-form expression. On the supply (firms’) side, we estimate the firms’latent costs probability

density function (pdf) in two steps. First we invert observed prices into costs. Then we use them as

generated variables to estimate a nonparametric pdf estimator.

The equilibrium with price dispersion has an interesting feature. Our analysis reveals that the

price pdf generally has a pole at the upper support, i.e. it asymptotes to infinity at that point.5

4Well-known labor applications include Postel-Vinay and Robin (2002) and Cahuc, Postel-Vinay and Robin (2006)

who model on-the-job search as a sequential auction over the worker between the current and prospective employer.

A job search model that is closer to ours is the work by Bontemps, Robin and van den Berg (1999) as they allow for

heterogeneous opportunity costs of keeping jobs among workers and continuous productivity among firms.
5While the pdf of optimal bids does not have this feature in a standard first price auction, it is present when there

is a binding reserved price (see Section 4 in GPV). Unbounded densities also exist in some job search models. E.g.

Bontemps, Robin and van den Berg (2000) find it for the wage distribution around the minimum wage.
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Intuitively this happens because there are consumers who search only one time and will pay whatever

price the firm charges up to their valuation of the good. Correspondingly the firm has an incentive to

charge close to that price. This feature has a theoretical implication because the optimal convergence

rate for the cost pdf for firms is determined by the convergence rates of the price pdf, and the

convergence rate for nonparametric estimators in the neighborhood of the pole is slower than at an

interior point. We show that a kernel density estimator for the firm’s cost pdf attains the same

optimal convergence rate as the GPV estimator on any fixed subset in the interior of the support,

and their convergence rate over a suitably expanding support that increases to the full support

asymptotically can be made arbitrarily close to the same optimal rate as on the interior after a

transformation is made. Our estimator that accounts for the pole relies on a transformation that is

effective without specifying the rate of divergence at the pole. We show using a simulation that not

accounting for the pole can lead to substantial bias in finite sample.

Recent empirical papers that employ models closest to ours can be found in Salz (2020) and

Mýsliwski and Rostom (2020). The former, which is an independent work that precedes ours chrono-

logically, proposes a search model to study the trade waste market in New York City. The latter

extends our model and use it to study the UK’s mortgage market. The common motivation for

both of these papers is to study the role of intermediaries in markets with heterogeneous firms and

consumers. Specifically, in additional to searching, consumers in their papers can choose to purchase

a broker. The broker acts as a clearinghouse where a procurement auction game is played. Our

model, which is a pure search model with no intermediary, is a special case of theirs. Importantly,

however, Salz assumes a broker always exists so that he can directly identify the firm’s cost distribu-

tion from the brokers independently of the search mechanism.6 Identification of the consumer search

subsequently relies on this. Therefore, as an econometric problem, ours and Salz’s are different and

not nested. On the other hand, no physical auction actually takes place in Mýsliwski and Rostom

(2020). They assume firms (mortgage brokers) search on behalf of consumers at a fee as a theoretical

construct; their identification and estimation strategies are based on the results in this paper. These

two approaches complement each other as data on intermediaries or shares may not be available in

some situations.

We organize the rest of the paper as follows. Section 2 presents the model and characterizes the

equilibrium of the game. We give identification results in Sections 3 and show how they lead to

estimators with desirable properties in Section 4. Section 5 extends our search model and results

to accommodate product differentiation. Section 6 contains a Monte Carlo exercise to illustrate

theoretical features of the model. Section 7 concludes. The proofs of all results not given in the main

6Salz assumes there are two types of firms (carters). A H(igh) and L(ow) cost types. Both types are present in

both the broker and search markets, and they are allowed to bid differently.
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text can be found in the Appendix.

2 Model

We consider a model in which there is a unit mass of consumers and a finite number of firms. Each

consumer has an inelastic demand for a single unit of a good supplied by the firms. Consumers differ

by search costs. They have a belief on the price distribution and employ a nonsequential search

strategy to decide on the number of firms to visit and purchase at the lowest price. Firms differ by

production costs. They form beliefs about consumer search behavior and competing firms’pricing

strategies, and set their price to maximize expected profits.

The primitives of our search model are {G (·) , H (·)}, which respectively represent the search
cost cdf and production cost cdf. The number of firms, denoted by I, is finite and known. We

model consumers in the same way as Moraga-González and Wildenbeest (2008), Moraga-González,

Sandor and Wildenbeest (2013), and Sanches, Silva and Srisuma (2018), which only differs from

Hong and Shum (2006) in that I is infinite in the latter. We describe the decision problem and the

best response for the consumers in Section 2.1. The aforementioned papers assume firms have the

same production cost and that is common knowledge. We assume costs differ across firms and they

are private information. We describe the firms’decision problem and derive their best response in

Section 2.2. We define the equilibrium of our game in Section 2.3.

2.1 Consumers

All consumers have the same valuation of the object at some finite and positive P . Each consumer

draws a search cost c, which is assumed to be a continuous random variable support on
[
0, C

]
⊂ R+

with cdf G (·). A consumer with search cost c faces the following decision problem:

min
1≤k≤I

c (k − 1) + EF
[
P(1:k)

]
.

The first search is free and a purchase is always made. We use P(k:k′) to denote the k−th order
statistic from k′ i.i.d. random variables of prices with some arbitrary distribution; P(1:k) denotes the

minimum of such k prices. The game is symmetric as all firms have equal probability of being found.

We use EF [·] to denote an expectation where the random prices have distribution described by the

cdf F (·).
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Consumer’s Best Response

The marginal saving from searching one more firm after having searched k firms is:

∆k (F ) ≡ EF
[
P(1:k)

]
− EF

[
P(1:k+1)

]
. (1)

∆k (F ) is non-increasing in k because EF
[
P(1:k)

]
is non-increasing in k. We define ∆I (F ) to be 0.

When price has a continuous distribution, EF
[
P(1:k)

]
is strictly increasing and

∆k (F ) =

∫
F (p) (1− F (p))k dp. (2)

The optimal behavior for a consumer that draws c > ∆1 (F ) is to search once and search k times

for 1 < k ≤ I if c ∈ [∆k (F ) ,∆k−1 (F )). For the purpose of defining equilibrium (see below), we can

state the best response for consumers in terms of proportions of consumer search. In what follows,

we use F to denote a set of all price cdfs and SI−1 to denote a unit simplex in RI+.

Lemma 1. A consumer’s best response is a map σD : F → SI−1 such that for any F in F ,

σD (F ) =

{
1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

for k = 1

for 1 < k ≤ I
. (3)

where {∆k}I−1k=1 is defined in (1) and ∆I := 0.

2.2 Firms

Firm i draws a marginal cost of production Ri. Ri is assumed to be a continuous random variable

supported on
[
R,R

]
⊂ R+ with cdf H (·) where R is finite. Firm costs are private information that

are independent from each other. Under symmetry, firm i then faces the following decision problem:

max
p

Λ (p,Ri;q) , where

Λ (p,Ri;q) = (p−Ri)

I∑
k=1

qk
k

I
P
[
P(1:k−1) > p

]
.

Here q = (q1, . . . , qI)
> denotes a vector in SI−1, where qk denotes the proportion of consumers

searching k firms. The term k
I
is the probability that firm i gets included when k firms are sampled.7

The standard first-price procurement auction can be seen as a special case of the game firms in our

model play when qI = 1.

7Let CIk ≡ I!
(I−k)!k! be the combinatorial number from choosing k objects from a set of I. Then CI−1k−1/CIk = k

I .
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Firm’s Best Response

We consider a pricing strategy β :
[
R,R

]
→
[
P , P

]
⊂ R that is strictly increasing almost everywhere

and satisfies β
(
R
)

= R. The latter is a free entry condition. We assume R = P , so that firms

always produce and a purchase is always made. For any q ∈ SI−1, we can define Λ∗ (·;q) to be the

value function for a representative firm when all players are assumed to employ a strictly increasing

optimal pricing strategy that we denote by β (·;q). We denote its inverse, β−1 (·;q) by ξ (·;q).

Λ∗ (r;q) = (β (r;q)− r)
I∑

k=1

qk
k

I
(1−H (ξ (β (r;q) ;q)))k−1 .

Then by the envelope theorem (Milgrom and Segal (2002)),

d

dr
Λ∗ (r;q)

∣∣∣∣
r=R

= −
I∑

k=1

qk
k

I
(1−H (R))k−1 , and

Λ∗
(
R;q

)
− Λ∗ (R;q) = −

I∑
k=1

qk
k

I

∫ R

s=R

(1−H (s))k−1 ds.

Solving this gives the solution of the firm’s maximization problem, where for all r:

β (r;q) = r +

∑I
k=1 qkk

∫ R
s=r

(1−H (s))k−1 ds∑I
k=1 qkk (1−H (r))k−1

. (4)

Suppose H (·) is differentiable and let h (·) denote the pdf of Ri. Differentiating the expression above

gives,

β′ (r;q) =
h (r)

(∑I
k=2 qkk (k − 1) (1−H (r))k−2

)(∑I
k=1 qkk

∫ R
s=r

(1−H (s))k−1 ds
)

(∑I
k=1 qkk (1−H (r))k−1

)2 . (5)

It is clear that β (·;q) is continuous and non-decreasing on
[
R,R

]
as well as satisfying β

(
R
)

= R.

In particular, note that β′ (·;q) is non-negative on
[
R,R

]
and is finite on [R,R). Furthermore, if

q1 = 1 then β (r;q) = R for all r, otherwise β (·;q) will be strictly increasing on
[
R,R

]
if h (·) > 0.

We define the firm’s best response to the consumers in terms of the distribution of β (Ri;q).

Lemma 2. The firm’s best response is a map σS : SI−1 → F such that for any q in SI−1, σS (q) is

the cdf of β (Ri;q) where β (·;q) is defined as in (4).

2.3 Equilibrium

We define a symmetric equilibrium for our game by any pair of consumer search proportions and

induced cdf for firm’s pricing strategy that simultaneously satisfy the best responses on both the

demand and supply side.
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Definition 1. A pair (q, F ) ∈ SI−1×F is a symmetric equilibrium if q = σD (F ) and F = σS (q),

where σS (·) and σS (·) are defined in Lemmas 1 and 2 respectively.

An equilibrium always exists in our model. For example the monopoly pricing strategy when all

consumers search just once constitutes an equilibrium with: βM (r;qM) = R for all r, and qM such

that q1M = 1 and qkM = 0 for k 6= 1. However, βM (Ri;qM) is degenerate and does not generate any

price dispersion (cf. Diamond (1971)). Such equilibrium will be immediately rejected by the data

where prices are not all the same. From (5), if h (·) > 0, it is clear that β (·;q) is strictly increasing

if and only if q1 < 1. We will focus on this case. Theorem 1 characterizes such equilibria by q that

satisfies (3) and (4) simultaneously.

Theorem 1. In a symmetric equilibrium (q, F ) where the equilibrium pricing strategy is strictly

increasing, q satisfies the following system of equations:

qk =

 1−G
(∫
F (p) (1− F (p)) dp

)
for k = 1

G
(∫

F (p) (1− F (p))k−1 dp
)
−G

(∫
F (p) (1− F (p))k dp

)
for k > 1

, (6)

where F (p) = H (ξ (p;q)) for all p ∈
[
P , P

]
.

The characterization above shows that an equilibrium can be summarized by a fixed-point of

some map, say T . It can be shown using the implicit function theorem that T is a continuous

map. Therefore an existence of an equilibrium with a price dispersion follows from a fixed-point

theorem, such as Brouwer’s, by showing that T maps a certain subset of SI−1 onto itself. There may
be multiple equilibria that support price dispersion. We are not aware of any relevant uniqueness

result in this context.

In subsequent sections we consider the econometric problem of identifying and estimating the

model primitives from data generated from a particular equilibrium. We will henceforth drop the

indexing arguments of equilibrium objects that are made explicit in this section for the purpose of

defining best response and equilibrium. E.g. β (·;q) becomes β (·), EF [·] becomes E [·] etc.

3 Nonparametric Identification

We assume to observe {(Yim, Pim)}I,Mi=1,m=1 where Yim and Pim respectively represent market share

and price of firm i in market m. We describe properties of market shares below. Here M is the total

number of markets and we will use a large M asymptotics framework.

Assumption D. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that:
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(i) there exists (q, F ) ∈ SI−1 × F with q1 < 1 so that Pim = β (Rim) ≡ β (Rim;q) where β (·;q)

has been defined in (4) for all i,m where {Rim}I,Mi=1,m=1 is a sequence of i.i.d. random variables across
i and m, with positive and finite density almost everywhere on

[
R,R

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is an i.i.d. sequence of random variables across m, such that the joint

distribution of (Yim, Pim) for each i,m satisfies,

E [Yim|Pim] =

I∑
k=1

qk
k

I
(1− F (Pim))k−1 . (7)

Assumption D(i) assumes observed prices are a random sample that correspond to the model

equilibrium. q1 < 1 ensures β (·;q) is strictly increasing and price has a continuous distribution.

Assumption D(ii) relates Yim to Pim. Specifically, the RHS of (7) is precisely the ex-ante probability

that a firm wins a sale when competing with I − 1 other firms by setting her price to be Pim. This

allows Yim to be a mismeasurement of the theoretical market share. In particular, the theoretical

ex-post market share can be formally defined by,

Y im =
q1
CI1

+
I∑

k=2

qk

∑
A∈Iik 1 [Pim < minj∈A {Pjm}]

CIk
,

where Iik is defined as
{
A =

⋃
j∈{1,...,I}\{i} {j}

∣∣∣ |A| = k − 1
}
for k = 2, . . . , I. We can motivate (7)

by assuming that Yim = Y im + εim where εim is an exogenous term that captures deviations from the

model. If εim is mean independent of Pim then E [Yim|Pim] = E
[
Y im|Pim

]
. Assumption D(ii) also

assumes market shares across markets are i.i.d. but allows correlations within each market; Yim and

Yjm are expected to be correlated when i 6= j as market shares are jointly determined by the prices

of all firms.

In Section 3.1 we consider identification on the demand side. We first identify q using (7), based

on {(Yim, Pim)}I,Mi=1,m=1, which can then be used to identify G (·). We identify H (·) in Section 3.2.
For the latter, it suffi ces to show how to recover firm costs, {Rim}I,Mi=1,m=1. In both Sections 3.1 and
3.2 we take F (·) and the joint distribution of (Yim, Pim) for any (i,m) to be known. Both of these

objects are nonparametrically identified under Assumption D when M →∞.

3.1 Consumers

Let Xim be a vector in RI such that (Xim)k = k
I

(1− F (Pim))k−1. We can write (7) as

Yim = X>imq+ εim, (8)

where εim satisfies E [εim|Pim] = 0. We can then identify q as the solution of a least squares problem.
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Lemma 3. Suppose Assumption D holds. If E
[
XimX

>
im

]
has full rank then q is identified.

We now treat both q and F (·) as known and use them to identify G (·) at {∆k}I−1k=1

Proposition 1. Suppose Assumption D holds. Then G (∆k) is identified for k = 1, . . . , I − 1.

Proof. From (4), we see that G (∆k) = 1−
∑k

k′=1 qk′ for k = 1, . . . , I − 1. The proof follows since

both {∆k}I−1k=1 and q are identified. In particular, note that ∆k is a functional of F (·) for all k (see
(1) and (2)) and q is identified from Lemma 3. �

The proof of Proposition 1 is similar to how Hong and Shum (2006) and Moraga-González and

Wildenbeest (2008) identify the search cost distribution in models with complete information where

all firms produce at the same cost. Ours differs from theirs only in how we identify q. Like their

results, this is a partial identification result as we can only identify G (·) at {∆k}Ik=1.
It is possible to identify G (·) almost everywhere on

[
0, C

]
if there is suffi cient exogenous variation

across markets. For example, suppose there are L market types where consumers draw search costs

from the same distribution but firms production costs have different distribution across types and/or

the number of firms may vary with L. If we are able to identify {∆kL}IL−1k=1 for market type L and

have L → ∞ in such a way that
⋃L
l=1 {∆kl : k = 1, . . . , IL − 1} grow dense8 in

[
0, C

]
, then we can

identify G (·). Moraga-González, Sandor and Wildenbeest (2013) propose this identification strategy
for their search model with complete information. Their strategy is also directly applicable in the

incomplete information environment that we consider.

3.2 Firms

Our identification strategy for H (·) takes similar steps to how GPV identifies the distribution of

bidder’s valuation in a first-price sealed-bid auction model from bids data. We derive the inverse of

the equilibrium pricing strategy in terms of identifiable objects the price distribution in Lemma 4.

We then use it to recover the latent marginal costs from observed prices.

Lemma 4. Suppose Assumption D(i) holds. Then the inverse of the equilibrium pricing strategy,

ξ :
[
P , P

]
→
[
R,R

]
, exists and takes the following form

ξ (p) = p−
∑I

k=1 qkk (1− F (p))k−1

f (p)
∑I

k=2 qkk (k − 1) (1− F (p))k−2
, (9)

and ξ
(
P
)

= R.

8Suppose A be an interval on the real line and {AL} is an increasing sequence such that AL ⊆ A. We say that

{AL} grows dense in A if for any x ∈ A and ε > 0, there exists L (x, ε) and x0 ∈ AL(x,ε) such that |x− x0| < ε.
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Since ξ (·) is identified, we can use it to invert production costs from prices to identify H (·).

Proposition 2. Suppose Assumption D holds. Then H (·) is identified.
Proof. Under Assumption D, ξ (·) is identified. Therefore we can recover Rim from ξ (Pim) for all

i,m. �

4 Estimation and Convergence Rates

We now focus on estimating h (·) with the best possible convergence rate. Along the way we will
discuss estimators of other parameters in the model. Parameters on the demand side can be estimated

at the parametric rate and our discussion on them will be brief.

We consider two separate cases. First, we consider the uniform convergence for h (·) over any
fixed closed interval that lies in the interior of

[
R,R

]
. In this case we can provide an estimator for

h (·) that achieves the same optimal convergence rate as the GPV estimator. Second, we consider

uniform convergence over an expanding interval that approaches
[
R,R

]
as the sample size increases.

In this case we will provide another estimator for h (·) that can converge at an arbitrarily close rate
to the one over fixed support. The reason for a slightly slower convergence rate for the latter case

is to account for limp→P f (p) =∞, which is a feature of the equilibrium. Our estimator for h (·) in
both cases will be based on kernel smoothing using estimated {Rim}I,Mi=1,m=1, which is to be obtained
through the estimated inverse of the pricing function (see (9)). In particular, the inverse of the

pricing function depends on (q, F (·) , f (·)) that have to be estimated.
To study convergence rates, we have to specify the degree of smoothness of H (·).

Assumption R. H (·) admits upto τ + 1 continuous derivatives on
[
R,R

]
for some τ ≥ 1.

Lemma 5. Suppose Assumptions D and R hold. Then f (·) admits upto τ + 1 continuous derivatives

on
[
P , P

)
for the same τ as in Assumption R.

Lemma 5 says that f (·) has the same degree of smoothness asH (·) everywhere on the equilibrium
price support other than at P . As alluded above, f (p) may diverge to infinity as p → P and its

derivative will also not be defined at P . However, this possibility has no effect on the convergence

rate we will derive over any closed inner subset of
[
R,R

]
.

We next define estimators for (q, f (·) , F (·)) and discuss their convergence rate under assumptions
D and R.

12



An estimator for F (·)

A natural estimator for F (·) is the empirical cdf, defined as

F̂ (p) =
1

MI

M∑
m=1

I∑
i=1

1 [Pim ≤ p] for all p. (10)

It is well-known from Donsker’s theorem that
√
M
(
F̂ (·)− F (·)

)
converges weakly to a Gaussian

process on
[
P , P

]
. Then by the continuous mapping theorem, supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = Op

(
1/
√
M
)
.

An estimator for q

We estimate q by least squares. Let Ym = (Y1m, . . . , YIm)>, em = (ε1m, . . . , εIm)> and Xm be an

I × I matrix such that (Xm)ik = k
I

(1− F (Pim))k−1. Vectorize Ym, Xm and em across m to form

Y =
[
Y>1 : · · · : Y>M

]>
, X =

[
X>1 : · · · : X>M

]>
and e =

[
e>1 : · · · : e>M

]>
respectively. Then a

vector version of (8) is,

Y = Xq+ e.

F (·) is unknown and has to be estimated. Let X̂ be the feasible counterpart of X where F (·) is
replaced by F̂ (·). Then,

q̂ =
(
X̂>X̂

)−1
X̂>Y, (11)

= q+ aM + bf,M , where

aM =
(
X>X

)−1
X>e,

bf,M =

((
X̂>X̂

)−1
X̂> −

(
X>X

)−1
X>
)
Y.

Using asymptotic theory for clustered samples (e.g. see Hansen and Lee (2019)), ‖aM‖ = Op

(
1/
√
M
)

as 1
M
X>X = 1

M

∑M
m=1

(∑I
i=1XimX

>
im

)
and 1√

M
X>e = 1√

M

∑M
m=1

(∑I
i=1Ximεim

)
would satisfy

a law of large numbers and central limit theorem respectively. Since
(
X̂>X̂

)−1
X̂> is a smooth

functional of F̂ (·), it can also be verified by applications of the continuous mapping theorem that

‖bf,M‖ = Op

(
1/
√
M
)
. Thus, ‖q̂− q‖ = Op

(
1/
√
M
)
.

Furthermore, since ∆k is a functional of F (·), we can estimate G (∆k) using q̂ and F̂ (·) based on
the constructive identification result in Proposition 1. Such estimator will be a smooth functional of

F̂ (·) and have a
√
M−convergence rate. Estimating G (·) as a curve is also possible when there are

data from different equilibria that can identify more points on the support of the search cost. In this

case, Sanches, Silva and Srisuma (2018) propose a series estimator that pooled data across equilibria

based on using estimated∆k and G (∆k) as generated regressor and regressand respectively; they also
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derive the convergence rate of such estimator. The same type of estimator can also be constructed

here. We refer the reader to Section 4 of Sanches, Silva and Srisuma (2018) for details.

An estimator for f (·)

We use a kernel density estimator, defined as:

f̂ (p) =
1

MIbf,M

M∑
m=1

I∑
i=1

K

(
Pim − p
bf,M

)
for all p, (12)

where K (·) is a (τ + 1)−th higher order kernel function and bf,M is a bandwidth that is proportional

to the optimal bandwidth that converges to zero at the rate
(
logM
M

) 1
2τ+3 , see Härdle (1991). Let

η∗M ≡
(
logM
M

) τ+1
2τ+3 denote the optimal rate of convergence for density estimation with τ+1 continuous

derivatives (Stone (1982)). Then it is well-known that

sup
p∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (η∗M) a.s.,

for any positive δ.

We summarize the convergence rates of q̂, F̂ (·), and f̂ (·) in a proposition.

Proposition 3. Suppose Assumptions D and R hold. Then for the estimators defined in (10) to

(12):

(a) supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = Op

(
1/
√
M
)
;

(b) ‖q̂− q‖ = Op

(
1/
√
M
)
;

(c) For any positive δ, supp∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (η∗M) a.s.

We next proceed to estimate h (·) using the estimators for q, f (·) and F (·) described above.

An estimator for h (·)

We start by obtaining an estimator for Rim, using

R̂im =

 Pim −
∑I
k=1 q̂kk(1−F̂ (Pim))

k−1

f̂(Pim)
∑I
k=1 q̂kk(k−1)(1−F̂ (Pim))

k−2 for Pim ∈ [P + δ, P − δ]

+∞ otherwise
. (13)

When R̂im < ∞, R̂im is the estimator of Rim based on on the feasible version of (9). In this case

R̂im is a smooth function of q̂, F̂ (Pim) and f̂ (Pim). Lemma 6 shows that its convergence rate to Rim

is determined by supp∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣. We will effectively be throwing away R̂im that is not
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finite when it comes to estimating h (·). We will prove this has no effect on our asymptotic results
because the probability that R̂im =∞ goes to zero asymptotically.

Lemma 6. Suppose Assumptions D and R hold. Then,

sup
i,m s.t. R̂im<∞

∣∣∣R̂im −Rim

∣∣∣ = O (η∗M) a.s .

We define our estimator for h (·) as follows:

ĥ (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
R̂im − r
bh,M

)
for any r. (14)

Here K (·) is a kernel function with a bandwidth bh,M . Under the conditions of Theorem 2, we can

use the convergence rate of R̃im to Rim to determine the uniform convergence rate of ĥ (·) to h (·).

Theorem 2. Suppose Assumptions D and R hold. Assume the following properties for components

in (14):

(i) K (·) be a symmetric τ−th order kernel with support [−1, 1];

(ii) K (·) is twice continuously differentiable on [−1, 1];

(iii) bh,M is proportional to
(
logM
M

) 1
2τ+3 .

Then for any ς > 0, there exists δ > 0 so that part (c) of Proposition 3 holds such that

sup
r∈[R+ς,R−ς]

∣∣∣ĥ (r)− h (r)
∣∣∣ = O

((
logM

M

) τ
2τ+3

)
a.s .

The rate
(
logM
M

) τ
2τ+3 is equal to η∗M

bh,M
, which is the optimal convergence rate GPV derived in their

paper. This rate is achieved by choosing bh,M that oversmooths relative to the optimal bandwidth

for a τ−times continuously differentiable density function.

Next, we consider the uniform convergence for an estimator of h (·) over
[
R + ςM , R− ςM

]
for

some ςM = o (1). We use a different estimator to ĥ (·) due to the possibility of f (·) having a pole
at P . Specifically, one of the standard assumptions assumed when deriving uniform convergence of

kernel density estimators is that the density is uniformly bounded (e.g. see Andrews (1995), Masry

(1996), Fan and Yao (2003), Hansen (2008)). The concern regarding having an unbounded density

is relevant for our model as the following lemma shows.

Lemma 7. Suppose Assumption D(i) holds. If q1 > 0 and H (·) is continuously differentiable on[
R,R

]
then f (·) is continuous on [P , P ) and satisfies:
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(a) infp∈[P ,P ] f(p) > 0;

(b) limp→P f(p) =∞.

We expect q1 > 0 to be the rule rather than an exception in equilibrium. For other cases, as we

show in the appendix that f(p) =
h(β−1(p))
β′(β−1(p))

(see equation (26)), the behavior of f (·) near P can be

complicated as it generally depends on both H (·) and which components of q are zero in equilibrium.
We next propose an estimator for h (·) that can converge at an arbitrarily close rate to

(
logM
M

) τ
2τ+3

uniformly over an expanding interval without having to impose further structure on H (·). Our strat-
egy is to take a log-transformation of the price to suppress the pole. We show this suffi ces without

having to specify the behavior of f (·) near P (c.f. Marron and Ruppert (1993)) since f (·) is inte-
grable. Specifically, let P †im ≡ − ln

(
P − Pim

)
. Denote the pdf of P †im by f

† (·). By a change of vari-
able, we have f (p) =

f†(− ln(P−p))
P−p for p ∈ [P , P ]. And from the perspective of P †im, whose support is

[− ln
(
P − P

)
,∞), we have for any p† ∈ [− ln

(
P − P

)
,∞), f †

(
p†
)

= exp
(
−p†

)
f
(
P − exp

(
−p†

))
.

Lemma 8 shows f † (·) and its derivatives are uniformly bounded, and f † (·) has the same degree
of smoothness as that of f (·). This result holds regardless whether f(·) has a pole or not.

Lemma 8. Suppose Assumptions D(i) and R hold.

(a) supp†∈[− ln(P−P),∞) f
†(p†) <∞;

(b) f † (·) admits upto τ + 1 continuous and uniformly bounded derivatives on [− ln
(
P − P

)
,∞)

for the same τ as in Assumption R.

We estimate f (·) using the following estimator,

f̃ (p) =
f̂ †
(
− ln

(
P − p

))
P − p

, where (15)

f̂ †
(
p†
)

=
1

MIbf†,M

M∑
m=1

I∑
i=1

K

(
P †im − p†
bf†,M

)
for all p†,

where K (·) is a (τ + 1)−th higher order kernel function with a bandwidth bf†,M that is proportional

to
(
logM
M

) 1
2τ+3 . Then, based on Lemma 8,

∣∣∣f̂ † (p†)− f † (p†)∣∣∣ = O (η∗M) a.s. uniformly over any fixed

inner proper subset of [− ln
(
P − P

)
,∞). Since

f̃ (p)− f (p) =
f̂ †
(
− ln

(
P − p

))
− f †

(
− ln

(
P − p

))
P − p

,

it follows that
∣∣∣f̃ (p)− f (p)

∣∣∣ = O (η∗M) a.s. uniformly over any fixed inner proper subset of
[
P , P

]
.

However, when we consider uniform convergence over an expanding support the rates for this es-

timator can be worse than η∗M . First, the bias from estimating f † (p) when p† lies within a bf†,M -

neighborhood from − ln
(
P − P

)
is of larger order of magnitude than an interior point. Second, as p
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approaches P ,
(
P − p

)−1
diverges to infinity and this makes the η∗M convergence rate unachievable

uniformly over any expanding subset of the support that grows to arbitrarily close to P .

We can avoid the bias at the boundary by choosing an expanding interval away from the boundary.

For this, let’s δ′M be any positive number that decreases to zero such that P−exp
(
ln
(
P − P

)
− bf†,M

)
=

o(δ′M). The divergence rate from
(
P − p

)−1
can be controlled by how fast p is approaching P . Then,

for any δ′′M that decreases to 0 we have

sup
p∈[P+δ′M ,P−δ′′M ]

∣∣∣f̃ (p)− f (p)
∣∣∣ = O

(
η∗M
δ′′M

)
a.s.

We can therefore always find an interval expanding to [P , P ] that f̃ (·) − f (·) converges uniformly
at a rate as close to η∗M as we like.

Proposition 4. Suppose Assumptions D(i) and R hold. Then for any sequence of positive reals

{ηm}
M
m=1 that decreases to 0 such that η∗M = o (ηM), there exists some sequence {δm}Mm=1 that de-

creases to 0 such that supp∈[P+δM ,P−δM ]

∣∣∣f̃ (p)− f (p)
∣∣∣ = O (ηM) a.s.

We can then estimate Rim on using f̃ (·), and use it to estimate h (·) as done previously in (13)
and (14) respectively. Specifically, for any δM > 0 let

R̃im =

 Pim −
∑I
k=1 q̂kk(1−F̂ (Pim))

k−1

f̃(Pim)
∑I
k=1 q̂kk(k−1)(1−F̂ (Pim))

k−2 for Pim ∈ [P + δM , P − δM ]

+∞ otherwise
, (16)

h̃ (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
R̃im − r
bh,M

)
for any r, (17)

where K (·) is a kernel function with a bandwidth bh,M . The following results are similar to Lemma 6
and Theorem. They differ in that the rates below do not reach the optimal rate but can be arbitrarily

close to it, and the results are valid over a sequence of expanding intervals instead of a fixed interval.

Lemma 9. Suppose Assumptions D and R hold. Then for any sequence of positive reals {ηm}
M
m=1

that decreases to 0 such that η∗M = o (ηM), there exists some sequence {δm}Mm=1 as described in
Proposition 4 such that

sup
i,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣ = O (ηM) a.s .

Theorem 3. Suppose Assumptions D and R hold. Assume the following properties for components

in (17):

(i) K (·) be a symmetric τ−th order kernel with support [−1, 1];
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(ii) K (·) is twice continuously differentiable on [−1, 1];

(iii) bh,M is proportional to
(
logM
M

) 1
2τ+3 .

Then for any ηM that satisfies η∗M = o (ηM) and ηM = O
(
b2h,M

)
, and for ςM that decreases to zero

such that bh,M = o (ςM),

sup
r∈[R+ςM ,R−ςM ]

∣∣∣h̃ (r)− h (r)
∣∣∣ = O

(
ηM
bh,M

)
a.s .

The uniform convergence rate for h̃ (·) is derived over an expanding support that avoids the
boundary effect. The additional condition Theorem 3 imposes to handle the possibility of a pole,

which is not required for Theorem 2, is that ηM = O
(
b2h,M

)
. This is a mild condition. E.g.,

when τ ≥ 2 this condition is not restrictive. To see this, suppose ηM = η∗MφM for some φM with

limM→∞ φM =∞, then ηM = O
(
b2h,M

)
is equivalent to φM

(
logM
M

) τ−1
2τ+3 = O (1). Since we are only be

interested in φM that diverges to infinity slowly for a tight upper bound we can choose it to diverge

at an aribrarily slow rate.

In practice, however, even if one is not interested in the uniform convergence rate over an ex-

panding support it is important to be aware of the presence of the pole. We will illustrate this in

Section 6.

5 Extension

Thus far our sellers were assumed ex-ante identical. We now introduce a search model where firms

offer vertically differentiated products. Our model can be seen as an incomplete information coun-

terpart to the model proposed in Wildenbeest (2011), which generalizes the homogeneous product

search model with complete information of Moraga-González and Wildenbeest (2008) to the case of

differentiated products. Our discussion here will focus on identification. The estimation strategy

and the convergence rates of developed in Section 4 can be readily extended to this setting.

5.1 Product Differentiation

Firm i’s product is characterized by νi ∈ R, which is a measure of differentiated quality. Consumers
and firms observe quality of all products, which these are not observable to the econometrician. The

main modelling assumption employed byWildenbeest (2011)is that the difference between quality and

marginal cost is the same for all firms. A natural way to extend his idea to an incomplete information

game is to put a common distribution around νi for all i. We will show a quasi-symmetric equilibrium,

where optimal pricing strategies between firms differ only by the differences in their qualities, can

then be characterized analogously to Theorem 1.
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Consumer’s Best Responses

Consumers now value products from different firms differently. The utility they derive from purchas-

ing from seller i is Ui. We assume,

Ui := ν0 + νi − Pi, (18)

where ν0 denotes the common value of the product, νi denotes the valuation of the differentiating

component due to firm i, and Pi denotes its corresponding price. One can, for example, attribute

νi to physical quality or other experience associated with purchasing from firm i. A consumer with

search cost c faces the following decision problem:

max
1≤k≤I

EL
[
U(k:k)

]
− c (k − 1) .

We again assume that the first search is free and a purchase is always made. Note that ν0 does not

enter our analysis, just as it does not in the model with a homogeneous product.9 For the moment

suppose firms set prices such that {Ui}Ii=1 is a random sample. Then, for k ≥ 1, let U(k:k) be the

maximum of k i.i.d. random variables of utilities and EL [·] denotes an expectation where the random
utilities have distribution described by the cdf L (·).
Consumers’search strategy will again be determined by the marginal gain they expect to get

from searching. We denote the expected marginal utility gain from a purchase when a consumer

searches one more firm when she has already searched k − 1 firms by

Υk (L) := EL
[
U(k:k)

]
− EL

[
U(k−1:k−1)

]
. (19)

We normalize the outside option such that U(0:0) = 0. The consumer’s best response is to search once

if and only if c > Υ1 (L), and search k > 1 times if and only if Υk−1 (L) < c < Υk (L). Analogous to

the discussions in Section 2.1, Υk (L) is positive and strictly decreasing when the distribution of Ui
is non-degenerate.

Firm’s Best Responses

We assume firm i’s production cost consists of a sum of deterministic (determined by quality) and

random (variable) components:

Ri = νi +R0i,

where R0i has cdf H0 (·) supported on R0 ∈
[
R0, R0

]
for some R0 > R0 > 0. We denote the support

of Ri by Ri :=
[
νi +R0, νi +R0

]
. We assume firm costs are independent draws to preserve the

independent value environment. Subsequently {R0i}Ii=1 is an i.i.d. sequence of random variables.

9One can think of ν0 to be suffi ciently high so that consumers always purchase. But the firms cannot extract

further profit from consumers due to an upper bound on the price they can set.
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We restrict our attention to quasi-symmetric pricing strategies where firms’strategies are affi ne

translations from one another. Denote firm i’s pricing strategy by βi (·;q) : Ri → Pi, where Pi =[
νi + P 0, νi + P 0

]
and βi (·;q) = νi + β0 (·;q) and β0 (·;q) : R0 → P0 =

[
P 0, P 0

]
. We denote the

valuation-cost markup by Xi := νi − Ri. By construction Xi = −R0i and {Xi}Ii=1 is i.i.d. across
firms. Since Ui = νi − Pi, we can equivalently study the firm i’s profit maximization problem where

the firm sets the level of utility consumers would get from buying its product instead of setting prices.

I.e., for any xi ∈
[
−R0,−R0

]
, consider

max
u

Γ (u, xi;q) , where

Γ (u, xi;q) = (xi − u)

I∑
k=1

qk
k

I
P
[
U(k−1:k−1) ≤ u

]
.

Suppose a solution to the maximization problem above exists and let µ (xi;q) := arg maxu Γ (u, xi;q)

for any (xi,q). We assume that µ (xi;q) to be increasing in xi and satisfies the boundary condition

that µ
(
−R0;q

)
= R0. Under this premise, we can apply the same type of arguments used to obtain

(4) to show that: for any r0i ∈ R0 and x (r0i) := −r0i,

µ (x (r0i) ;q) = x (r0i)−

I∑
k=1

qkk
∫ R0
s=r0i

(1−H0 (s))k−1 ds

I∑
k=1

qkk (1−H0 (r0i))
k−1

. (20)

Therefore {µ (x (R0i) ;q)}Ii=1 is an i.i.d. sequence of random utilities that firms offer to the consumers
upon drawing {R0i}Ii=1 as a best response given q.
For any ri = νi+ r0i, since µi (xi (ri) ;q) = νi−βi (ri;q), it follows that βi (ri;q) = νi+β0 (r0i;q)

where,

β0 (r0i;q) = r0i +

I∑
k=1

qkk
∫ R0
s=r0i

(1−H0 (s))k−1 ds

I∑
k=1

qkk (1−H0 (r0i))
k−1

. (21)

β0 (·;q) has an identical structure to β (·;q) as defined in (4). Therefore the properties of each firm’s

pricing strategy derived here are the same as that of the homogeneous product case other than being

shifted by a constant νi. In particular β0 (·;q) is strictly increasing when q1 < 1, and its inverse

takes the same form as (9) in Lemma 5.

Equilibrium

We can now define a quasi-symmetric equilibrium, where players using pricing strategies that are

affi ne translation from each other, and characterize the equilibrium of the game using an analogous
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expression to Theorem 1. We state the characterization of the equilibrium in Theorem 3. We provide

its proof and the definition of a quasi-symmetric equilibrium in the Appendix.

Theorem 4. In a quasi-symmetric equilibrium (q, F0) where the equilibrium pricing strategies are

strictly increasing, q satisfies the following system of equations:

qk =

 1−G
(∫
F0 (p) (1− F0 (p)) dp

)
for k = 1

G
(∫

F0 (p) (1− F0 (p))k−1 dp
)
−G

(∫
F0 (p) (1− F0 (p))k dp

)
for k > 1

,

where F0 (p) = H0 (ξ0 (p;q)) for all p ∈
[
P , P

]
and ξ0 (·;q) is the inverse of β0 (·;q).

5.2 Identification

For the rest of this section, suppose we have data generated from a non-degenerate equilibrium

described in the previous subsection as described by the following assumption.

Assumption D’. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that:

(i) there exists (q, F0) ∈ SI−1 ×F with q1 ∈ (0, 1) so that Pim = νi + β0 (R0im;q) where β0 (·;q)

has been defined in (21) for all i,m where {R0im}I,Mi=1,m=1 is a sequence of i.i.d. continuous random
variables with almost everywhere positive density on

[
R0, R0

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is an i.i.d. sequence of random vectors such that the joint distribution

of (Yim, P0im) for each i,m satisfies,

E [Yim|P0im] =
I∑

k=1

qk
k

I
(1− F0 (P0im))k−1 . (22)

If we observe {νi}Ii=1, we can construct {P0im}
I,M
i=1,m=1. Then identification immediately follows

the same steps described in Section 3. In particular, in this order, (i) use {P0im}I,Mi=1,m=1 to identify
f0 (·) and F0 (·); (ii) identify q from (22) (cf. Lemma 3), combine it with {Υk}I−1k=1, we can identify

{G (Υk)}I−1k=1 (cf. Proposition 1); (iii) recover {R0im}
I,M
i=1,m=1 from

R0im = P0im −
∑I

k=1 qkk (1− F0 (P0im))k−1

f0 (P0im)
∑I

k=2 qkk (k − 1) (1− F0 (P0im))k−2
, (23)

cf. (9), which in turn identifies H0 (·) (cf. Proposition 2).
In practice, however, we do not know {νi}Ii=1. The key insight to proceed is that optimal search

behavior is determined by the shape of the equilibrium price distributions, which is the same for
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all firms, and not their locations that may differ. Subsequently, relative utilities are identified by

relative demeaned prices. To see this, recall that Uim = νi − Pim, we have for all i and j,

Uim − Ujm = P0jm − P0im (24)

= ωjm − ωim, (25)

where ωim denotes Pim−E [Pim], and we use the fact that E [P0im] = E [P0jm] to go from (24) to (25).

Our identification results rely on the distribution of ωim, which identified. We denote the pdf and

cdf of ωim by w (·) and W (·) respectively. Note that F0 (·) and W (·) are parallel to each other by
construction. A useful relation that immediately follows from inspecting (24) and (25) is that the

cdfs of P0im and ωim coincide when evaluated at their respective points of realizations. We state this

as a lemma.

Lemma 10. Suppose Assumption D’holds. Then F0 (P0im) = W (ωim) for all i and m.

This enables us to identify the consumer search distribution.

Proposition 5. Suppose Assumption D’holds. Then G (Υk) is identified for k = 1, . . . , I − 1.

Proof. By Lemma 10, any q that satisfies (22) also satisfies

E [Yim|ωim] =
I∑

k=1

qk
k

I
(1−W (ωim))k−1 .

We can then identify q in closed-form as done in Lemma 3. From (19), we can also identify Υk in

the same way we identify ∆k in Section 3.1 by replacing the raw prices with the demeaned prices.

We can then apply the argument used to prove Proposition 1 to identify {G (Υk)}I−1k=1 from q and

{Υk}I−1k=1. �

On the supply side, we can identify the shape of the distribution of R0im but not its location.

This is clear from (23) because we can only identify the shape of the distribution of P0im. More

precisely, what we can identify is the distribution of ρim := R0im − E [P0im].

Proposition 6. Suppose Assumption D’holds. Then the distribution of ρim is identified.

Proof. Construct ρim by replacing (P0im, f0 (P0im) , F0 (P0im)) in the RHS of (23) by (ωim, w (ωim) ,W (ωim))

and apply Lemma 10. �

Our Propositions 5 and 6 show that we can use {ωim}I,Mi=1,m=1, which is a random sample, in place
of the observed prices that are heterogeneous due to {νi}Ii=1 to identify the demand and supply side
parameters in the same way as done in Sections 3.1 and 3.2 respectively. The proposed estimators
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and convergence rates discussed in Section 4 are therefore immediately applicable to our search model

with differentiated products as well.

Not knowing {νi}Ii=1 does not limit the scope of counterfactual studies relative to the symmetric
model. This is because consumers in our model bear the cost of quality differences and get com-

pensated in equal amount with utility. Thus we can study changes in search behavior and the price

distribution associated with quality adjusted production costs. We can identify these effects by com-

paring the difference of price distributions generated from the old and new equilibria where firms are

treated symmetrically such that every firm draws cost from the same distribution as ρim.

6 Numerical Studies

The purpose of this section is to numerically illustrate theoretical features of our model and discuss

issues that may be relevant for applications. We consider a simple design for a model of search

with I = 3. Consumers draw search costs from a distribution with cdf G (c) =
√
c for c ∈ [0, 1].

Firms draw marginal costs from a uniform distribution on [0, 1]. We use the system of equations

in (6) to iteratively solve for the equilibrium of the game. We use numerous random initial values

to iterate from. We have found only one equilibrium that generates price dispersion, where q =

(0.7852, 0.0455, 0.1693). We generate data from this equilibrium for 333 markets, so IM = 999, by

drawing prices prices from (4) and market shares from (7).

We focus on the nonparametric estimators of f (·) and h (·). Estimation of other components is
straightforward and the corresponding estimators are well-behaved with the parametric convergence

rate. Specifically, we estimate F (·) and q using the estimators described in Section 4 that satisfy
Assumption H. For f (·) and h (·), while the estimators mentioned in Section 4 are suffi cient in
delivering the desired convergence rate uniformly over an expanding interval in practice we may

want to make use of the data outside of the interval that are closer to the boundaries if they can be

well-estimated. In particular, it has been documented that the trimming procedure GPV proposed

to avoid the boundary bias in estimating pdfs in a first-price auction model does not perform well

in practice because trimming and the general bias from estimating the bids pdf in the first stage

have direct effects on the estimated (object) valuations that are used as a generated regressor in the

second stage of estimating the valuation pdf. In this context, Hickman and Hubbard (2015) suggest

one uses boundary corrected kernel to avoid trimming, i.e. use all observations. Their choice for the

boundary correction is based on the estimator of Karunamuni and Zhang (2008, henceforth KZ), and

they show it works well in small samples (also see Li and Liu (2015) in another auction application).

Our estimation problem is more challenging than the GPV setup because, other than the boundary

issue, (i) for estimating f (·) we have a pole at the upper boundary and (ii) for estimating h (·) we
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have additional sampling errors from estimating q and F (·).
We consider three estimators for f (·). First, f̂1 (·), is a standard kernel estimator that does not

account for the boundary effect or the presence of the pole. Second, f̂2 (·), following KZ, accounts
for both the lower and upper boundaries based on KZ but not acknowledge the presence of the

pole. Third, f̂3 (·) uses the transformation described in equation (15) to accommodate the pole and
applies boundary correction at the lower boundary. We note that the boundary correction estimator

of KZ is a sum of a standard kernel density estimator and term from an endpoint kernel. The latter

is zero outside of a bandwidth-neighborhood of the boundaries so KZ’s estimator is just a regular

density estimator when evaluated at interior points. We use the Epanechnikov kernel for all of our

estimators. Boundary correction uses the optimal endpoint kernel and associated plug-in constants

and bandwidths suggested in KZ. Figures 1 to 3 plot the mean and the 5th and 95th percentiles for

each
(
f̂1 (·) , f̂2 (·) , f̂3 (·)

)
against the true price pdf.

We see that f̂1 (·) performs poorly near both lower and upper support points. Boundary correc-
tion removes the bias near the lower boundary but not near the pole, we also see boundary correction

makes f̂2 (·) more variable in the sense that its distribution is concentrated around the mean rela-
tive to f̂1 (·)’s near the boundaries. The transformation method we suggest leads to a very good
estimator near pole. The distribution of f̂3 (·) is also highly concentrated around its mean, but the
transformation with bias correction has larger bias near the lower boundary than the non-transformed

counterpart.

We next compare three estimators for h (·) in Figures 4 to 6. There, we plot the mean and the 5th
and 95th percentiles of KZ boundary corrected estimators,

(
ĥ1 (·) , ĥ2 (·) , ĥ3 (·)

)
, for the marginal

cost density that correspond respectively to
(
f̂1 (·) , f̂2 (·) , f̂3 (·)

)
. These figures also include the mean

and the 5th and 95th percentiles of an infeasible KZ boundary corrected estimator constructed from

the estimated costs when the true f (·) is used; q and F (·) are still estimated. Naturally the infeasible
estimator is generally a superior estimator than the feasible ones. Noting that even the infeasible

estimator is also more variable closer to the boundaries and it still suffers from the boundary effect.

For the feasible estimators, we see that ĥ1 (·) performs poorly generally. In comparison, ĥ2 (·) has
lower bias over its lower half of the support that includes the lower boundary but its distribution in

that region is more variable than ĥ1 (·), and its bias at the upper half of the support is large. ĥ3 (·)
performs extremely well closer to the upper support and its distribution is concentrated around the

mean over the whole support, however its bias increases as it approaches the lower boundary.

The simulation study illustrates the performance of ĥj (·) inherits characteristics of f̂j (·). There-
fore it is clear one should account for the boundary effect at the lower support as well as the pole

at the upper support. The transformation approach we propose estimates regions near the upper of
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Figure 1: f̂1(·) - No boundary correction or transformation
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Figure 2: f̂2(·) - KZ boundary correction
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Figure 3: f̂3(·) - Transformation and KZ boundary correction
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Figure 4: ĥ1(·) - Based on f̂1(·)
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Figure 5: ĥ2(·) - Based on f̂2(·)
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Figure 6: ĥ3(·) - Based on f̂3(·)
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Figure 7: ĥ4(·) - Based on f̂2(·) and f̂3(·)
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marginal cost almost as well as the infeasible estimator because f̂3 (·) is a good estimator for f (·)
near the pole, where the sampling error of its reciprocal in that region has a low order of magni-

tude.10 The diffi culty in estimating a nonparametric object is unavoidable for other parts of the

distribution, especially in regions where price has a low density. A potentially relevant observation

is that transforming the price data to estimate the pdf with boundary correction and transforming

it back to get the price pdf may give a good estimator for f (·) near the pole but the bias correction
near to lower support point can become less effective. One way to safeguard against this is to use

both f̂2 (·) and f̂3 (·) to estimate parts of h (·). For instance, we can average the estimated costs from
using f̂2 (·) and f̂3 (·) in computing (12) for observations that correspond to the lower half of the
prices and use f̂3 (·) to estimate costs evaluated at the upper half of the prices. This leads to ĥ4 (·).
Figure 7 plots the mean and the 5th and 95th percentiles of this estimator.

7 Concluding Remarks

Hong and Shum (2006) and a series of papers by Moraga-González and Wildenbeest consider empir-

ical models of consumer search in a complete information environment where firms have the same

production cost and show how they can be identified with just observed prices alone. We propose

a consumer search model with incomplete information where firms have different private costs. We

characterize the equilibrium in such model and provide conditions to identify the model from price

10We thank Nianqing Liu for pointing this out.
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and market share data. Our identification strategy is constructive and leads to natural estimators

that can be computed without any optimization. Parameters on the consumer’s side can be esti-

mated at the same rate of convergence as in the complete information model. On the firm’s side, the

density function of the firms’production costs can be nonparametrically estimated with the same

rate as the optimal rate derived in related auction models of Guerre, Perrigne and Vuong (2000) over

any fixed subset in the interior of the support, and the rate can be made arbitrarily close to that if

the subset is allowed to expand to the full support generally. The reason for slower convergence rate

when an expanding subset is due to the potential pole at the upper support of the equilibrium price

density. Irrespective whether one is interested in obtaining a convergence rate over a fixed or expand-

ing intervals, our simulation shows the presence of the pole to have practical relevance and should

be accounted for. We also present a search model with vertically differentiated products, following

Wildenbeest (2011), as a way to account for systematic price differences that may exist amongst

firms where the above results can be generalized to. The results from the homogeneous product

model readily extends to the differentiated product case. Another way to model heterogeneity is for

firms to have different probabilities of being found by consumers. Our results can also be readily

extended to this case if we assume that an equilibrium exist where the optimal pricing strategies of

firms are strictly increasing and share the same support. We are optimistic that such equilibrium

exists based on some positive results from the literature on asymmetric first-price auctions11. The

diffi culty in establishing these features in such asymmetric search model is due to the fact that the

(quasi-)inverse of the optimal pricing strategies are solutions to a system of nonlinear differential

equations.12 We leave this task for future research.

Our paper focuses on convergence rates of a search model involving products without any observed

characteristics. In applications product characteristics can be readily incorporated into the model

if they are available. As in the auction model of Guerre et al. (2000), however, the nonparametric

rate of convergence for the conditional distributions will be slower than that of the unconditional

ones. We expect it is possible for a recent approach to mitigate the dimensionality issue in the

auction literature, particularly the quantile regression approach of Gimenes and Guerre (2020), can

be applied to a search model like ours. Parametric assumptions can also be readily incorporated, for

these we refer the readers to Mýsliwski and Rostom (2020) and Salz (2020) for substantive examples

of empirical modelling for closely related search models.

11Some existence results do exist, e.g. see Lebrun(1999) and Maskin and Riley (2000). Furthermore, a common

support for the optimal bids in the first-price context is also known to hold (e.g. see Athey and Haile (2007).
12It is not trivial even to show existence of such equilibrium numerically. For instance, in a related problem,

numerical studies of the equilibrium in asymmetric auctions is a current topic of research - e.g. see the discussion in

Fibich and Gavish (2011).
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Finally, we do not deal with inference in this paper. Inference on the demand side parameters is

relatively straightforward, e.g. see Sanches, Silva and Srisuma (2018). Establishing the asymptotic

distribution and validity for the bootstrap of ĥ (·) and h̃ (·) is more challenging. We conjecture
this can be obtained by suitably adapting the arguments in a recent article by Ma, Marmer and

Schneyerov (2019), where they derive the asymptotic variance for the GPV’s estimator as well as

showing inference using the bootstrap is valid.

Appendix

This Appendix provides the proofs of Lemmas and Theorems. We omit the proofs of Lemmas 1, 2

and 10, Theorem 1, and the Propositions because these are either immediate consequences of what

have discussed or proven in the main text. We also omit the proofs of Lemma 6 and Theorem 2

because they are very similar to the proofs of Lemma 9 and Theorem 3 respectively.

Proof of Lemma 3. From (8), we have E [Yim|Xim] = X>imq. Multiply both sides by Xim and take

expectation yields E [XimYim] = E
[
XimX

>
im

]
q. Since E

[
XimX

>
im

]
has full rank, the proof follows

from solving for q. �

Proof of Lemma 4. Under D(i), by inspecting (4) and (5), β (·) is strictly increasing and continu-
ously differentiable on

[
R,R

]
with β

(
R
)

= R. Therefore ξ (·) exists, it is also strictly increasing on[
P , P

]
with ξ

(
P
)

= R.

To obtain the desired expression, for any r, we know that β (r) is the maximizer of the following

function,

Λ (p, r) = (p− r)
I∑

k=1

qk
k

I
(1−H (ξ (p)))k−1 .

β (r) is also the zero to ∂
∂p

Λ (p, r), where

∂

∂p
Λ (p, r) =

I∑
k=1

qk
k

I
(1−H (ξ (p)))k−1

+ (p− r) ξ′ (p)h (ξ (p))

I∑
k=2

qk
k (k − 1)

I
(1−H (ξ (p)))k−2 .

Noting that the cdf and pdf of Pim and Rim are related through,

F (p) = H (ξ (p)) and f (p) = ξ′ (p)h (ξ (p)) . (26)

Substitute these in and impose the first-order condition leads to
I∑

k=1

qkk (1− F (p))k−1 = (p− ξ (p)) f (p)

I∑
k=2

qkk (k − 1) (1− F (p))k−2 .
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Rearranging the relation above to make ξ (p) the subject of the equation above gives (9). �

Proof of Lemma 5. Using (5), we can write f (p) = ψ
(
β−1 (p)

)
, where ψ (·) is a real-value function

defined on
[
R,R

]
such that

ψ (r) =

(
I∑

k=1

qkk (1−H (r))k−1
)2

(
I∑

k=2

qkk (k − 1) (1−H (r))k−2
)(

I∑
k=1

qkk
∫ R
s=r

(1−H (s))k−1 ds

) . (27)

From (5), we see that β−1 (·) is τ + 1 times continuously differentiable on [P , P ) as β′ (·) > 0 on

[R,R). The result then follows from the fact that ψ (r), see (27), is a smooth functional of H (·) for
all r ∈ [R,R). �

Proof of Lemma 7. The proof can be seen from inspecting (27).

Part (a) follows from infp∈[P ,P ] f (p) = infr∈[R,R] ψ (r) ≥ q21(
I∑
k=2

qkk(k−1)
)(

R
I∑
k=1

qkk

) > 0.

Part (b) follows from limp→P f(p) = limr→R ψ (r) =∞. �

Proof of Lemma 8. Given that f †
(
p†
)

= exp
(
−p†

)
f
(
P − exp

(
−p†

))
for all p† ∈ [− ln

(
P − P

)
,∞),

it suffi ces to show limp→0 pf
(
P − p

)
= 0, which is a fact that we will now show. For any P ≤ pn <

p′n ≤ P , by the mean value theorem for definite integrals, there exists cn ∈ (pn, p
′
n) such that∫ p′n

p=pn

f (p) dp = (p′n − pn) f (cn) ≥ (p′n − pn)(
P − pn

) (P − cn) f (cn) .

Suppose pn = P − 2−n+1 and p′n = P − 2−n. Then for all n,∫ p′n

p=pn

f (p) dp ≥ 1

2

(
P − cn

)
f (cn) .

Since f (·) is a proper density and limn→∞ pn = P , the proof follows from limn→∞
∫ p′n
p=pn

f (p) dp = 0.�

Proof of Lemma 9. From (16) when R̃im <∞ we can write,

R̃im −Rim = I1 (Pim) + I2 (Pim) , where

I1 (Pim) = Ψ
(
q̂, f̃ (Pim) , F̂ (Pim)

)
−Ψ

(
q, f̃ (Pim) , F (Pim)

)
,

I2 (Pim) = Ψ
(
q, f̃ (Pim) , F (Pim)

)
−Ψ (q, f (Pim) , F (Pim)) ,

where Ψ (q, f (Pim) , F (Pim)) =
∑I
k=1 qkk(1−F (Pim))

k−1

f(Pim)
∑I
k=2 qkk(k−1)(1−F (Pim))

k−2 so that Ψ
(
q̂, f̃ (Pim) , F̂ (Pim)

)
and

Ψ
(
q, f̃ (Pim) , F (Pim)

)
are estimated counterparts of Ψ (q, f (Pim) , F (Pim)) where some or all com-

ponents of (q, f (Pim) , F (Pim)) are replaced by
(
q̂, f̃ (Pim) , F̂ (Pim)

)
accordingly. By Lemma 7(a)
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we know infp∈[P+δM ,P−δM ] f̃ (p) > c0 for some c0 > 0 with probability approaching one as M → ∞.
Given the convergence rates in Propositions 3 and 4, it is straightforward to verify that the partial

derivatives of Ψ
(
q, f̃ (Pim) , F (Pim)

)
with respect to its first and third arguments are also almost

surely uniformly bounded. Therefore by the mean value theorem it follows that

|I1 (Pim)| = Op

‖q̂− q‖+ sup
p∈[P+δM ,P−δM ]

∣∣∣F̂ (p)− F (p)
∣∣∣


So that |I1 (Pim)| = o(ηM) almost surely. For I2, we can write

I2 (Pim) = −
(
f̃ (Pim)− f (Pim)

f̃ (Pim) f (Pim)

) ∑I
k=1 qkk (1− F (Pim))k−1∑I

k=2 qkk (k − 1) (1− F (Pim))k−2
,

so that

|I2 (Pim)| = O

 sup
p∈[P+δM ,P−δM ]

∣∣∣f̃ (p)− f (p)
∣∣∣
 a.s .

The upper bounds for |I1 (Pim)| and |I2 (Pim)| are independent of Pim. The proof then follows from
applying the convergence rates of the quantities in |I1 (Pim)| and |I2 (Pim)| as stated in Proposition
4.�

Proof of Theorem 3. From (17),

h̃ (r)− h (r) = J1 (r) + J2 (r) + J3 (r) , where

J1 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

(
K

(
R̃im − r
bh,M

)
−K

(
Rim − r
bh,M

))
1
[
R̃im <∞

]
,

J2 (r) = − 1

MIbh,M

M∑
m=1

I∑
i=1

K

(
Rim − r
bh,M

)
1
[
R̃im =∞

]
,

J3 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
Rim − r
bh,M

)
− h (r) .

For J1:

J1 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K ′(Rim − r
bh,M

)(
R̃im −Rim

bh,M

)
+

1

2
K ′′
(
Rim − r
bh,M

)(
R̃im −Rim

bh,M

)21 [R̃im <∞
]
,

where Rim is some mid-point between R̃im and Rim. Then we have

|J1 (r)| ≤
supi,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣
bh,M

1

MIbh,M

M∑
m=1

I∑
i=1

∣∣∣∣K ′(Rim − r
bh,M

)∣∣∣∣
+

(
supi,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣)
b3M

2

1

2MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
sup
v∈R

K ′′ (v) .
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It can be shown using standard methods for kernel estimators that

sup
r∈[R+ςM ,R−ςM ]

∣∣∣∣∣ 1

MIbh,M

M∑
m=1

I∑
i=1

∣∣∣∣K ′(Rim − r
bh,M

)∣∣∣∣− h (r)

∫
|K ′ (v)| dv

∣∣∣∣∣ = o (1) ,

where supr∈[R,R] h (r)
∫
|K ′ (v)| dv is finite. Since

[
R̃im <∞

]
is an almost sure set asymptotically,

1
MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
converges to 1 almost surely and,

1

2MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
sup
v∈R

K ′′ (v) =
1

2
sup
v∈R

K ′′ (v) + o (1) .

It follows that

sup
r∈[R+ςM ,R−ςM ]

|J1 (r)| ≤ O

(
ηM
bh,M

+
η2M
b3M

)
.

When ηM = O (b2M) it follows that,

sup
r∈[R+ςM ,R−ςM ]

|J1 (r)| ≤ O

(
ηM
bh,M

)
a.s .

For J2, since
[
R̃im =∞

]
is a null set asymptotically and 1

[
R̃im =∞

]
= o (υM), by choosing

υM = o
(

ηM
bh,M

)
,

sup
r∈[R+ςM ,R−ςM ]

|J2 (r)| ≤ o (υM) a.s .

For J3, it is a standard result in kernel estimation that

sup
r∈[R+ςM ,R−ςM ]

|J3 (r)| = O
(
bτh,M + η∗M

)
a.s .

The bias component in J3 is of the same order as
η∗M
bh,M

= o
(

ηM
bh,M

)
and the stochastic part is also

o
(

ηM
bh,M

)
. �

Proof of Theorem 4. It suffi ces to provide the best responses of consumers and firms analogous

to those in Lemmas 1 and 2 respectively, and give the definition of a quasi-symmetric equilibrium.

These results are stated in Lemmas 11 and 12 below. In particular, Lemma 11 replaces {∆k}I−1k=1

in equation (3) by {Υk}I−1k=1 and Lemma 12 use the distribution of random utilities based on (20)

instead of prices.

Lemma 11. Suppose Assumption D’holds. Then the consumer’s best response is a map σD : L →
SI−1 such that for any L in L,

σD (L) =

{
1−G (Υk (L))

G (Υk−1 (L))−G (Υk (L))

for k = 1

for k > 1
. (28)
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Lemma 12. Suppose Assumption D’holds. Then the firm’s best response is a map σS : SI−1 → L
such that for any q in SI−1, σS (q) is the cdf of µ (x (R0i) ;q) where µ (x (·) ;q) is defined as in (20).

We can now define a quasi-symmetric equilibrium as follows.

Definition 2 . A pair (q, L) ∈ SI−1 × L is a quasi-symmetric equilibrium if q = σD (L) and

L = σS (q), where σS (·) and σS (·) are defined in Lemmas 10 and 11 respectively.

The proof of the proposition follows immediately from here. �
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