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S.1 Unobserved demand heterogeneity

This appendix discusses the effects of time-varying unobserved heterogeneity on our demand
estimates. Our analysis is based on three different exercises. First, using aggregate data at
brand level we estimated the following regression:

sjmt = α +
J∑
j=1

βjpjmt +
J∑
j=1

γjsjmt−1 + δj + δt + εjmt, (S.1.1)

where, sjmt and pjmt are the share and the price of brand j at supermarket m and week t,
δj is a brand dummy, δt is a weekly dummy and εjmt is an idiosyncratic error term. We see
this equation as a reduced form representation of the process governing the evolution of the
aggregated market shares as shown by equation (9) in the paper.
We estimated one equation for each supermarket – Morrisons and Tesco – and collected the
estimates of the weekly dummies, δt. These dummies are interpreted as unobserved demand
shocks affecting all butter and margarine brands in each supermarket. Figure S1.1 illustrates
the dummies for Morrisons (upper panel) and Tesco (lower panel). The figure on the left hand
side shows point estimates of each dummies and 95% confidence intervals. For Morrisons and
Tesco virtually all dummy estimates are not significant at 10%. The figures on the right hand
side show the same point estimates without the confidence intervals and allows us to better
visualise the behaviour of these demand shocks over time. In both figures we do not see any
clear pattern (cycle, trend, seasonality) of these demand shocks over time.

As mentioned, the coefficients in Figure S1.1 capture unobserved demand shocks affecting
all brands in each supermarket. To see how these shocks differ across brands we estimate a
separate regression for each brand separately pooling both supermarkets (and including super-
market dummies). The time dummies in this regression are now interpreted as brand specific
unobserved demand shocks. Figure S1.2 shows these time dummies. For each brand, the figure
shows two graphs. The first has point estimates with 95% confidence intervals and the second
has the point estimates without confidence intervals. A quick inspection of the figure reveals
that all the point estimates are not significant at 10%. They also appear to do not show any
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Figure S1.1: Weekly Dummies (Demand Shock) for each Supermarket
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clear pattern over time.

For our third exercise, we use the same scanner data that we use to estimate the demand
models in our paper. Using a similar idea above, we re-estimate our demand model that now
includes weekly dummies in our models. Ideally, we would like to include a time varying brand
dummy to mimic BLP’s ξjt – instead of a brand fixed effect as in the previous version of the
paper – but estimating a non linear model with more than 1400 dummies showed infeasible.
Noting here that we have to perform maximum likelihood estimation to capture the unobserved
time effects because we cannot use Berry’s inversion. As an alternative, we included 200
weekly dummies shifting the indirect utility from choosing the outside option, so that:

uh0t = δ0t + ξh0t (S.1.2)

The estimated δ̂0t are interpreted as unobserved demand shocks affecting all brands at the
same supermarket and are plotted in Figure S1.3. Similarly to the aggregate-level exercise, we
find no clear patterns or cycles. For Morrisons, the majority of shocks are not significantly
different from 0. For Tesco, the confidence intervals are narrower, but the magnitudes are
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Figure S1.2: Weekly Dummies (Demand Shock) for each Brand
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not economically significant either when compared to the estimated brand constants δj . The
normalisation in the baseline model implies that all those coefficients are 0, whilst here most
of the estimates are between 0 and -0.1. We therefore believe that the bias in the baseline
model is negligible. Overall, this set of results seems to suggest that time varying unobserved
heterogeneity affecting individual demand is not an important issue in this market. A potential
explanation for these patterns is that all these brands are well established in the market and
the relevant space of characteristics of these products is pretty stable over this period. The
same type of arguments were used in Griffith et al. (2017) to model the demand for butter and
margarine using the same dataset used in this paper.
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Figure S1.3: Weekly Dummies (Demand Shock) for each Supermarket – Scanner Data
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S.2 Identification, estimation and model solution

This appendix summarises some of the technical details behind identification, estimation and
solution of the model. Appendix S.2.1 shows how relative price adjustment costs can be iden-
tified independently of payoff parameters using the arguments in Komarova et al. (2018) and
argues how additional, economically meaningful restrictions can be imposed to interpret the
parameters as product-specific price adjustment costs (instead of relative differences). Ap-
pendix S.2.2 lays out the procedures used to estimate the discount factor, β. Finally, Appendix
S.2.3 contains details on the algorithms used to solve for Markov Perfect Equilibrium in the
counterfactual scenarios.

S.2.1 Closed-form identification of price adjustment costs

In this appendix we lay out the identification result for the vector of price adjustment costs in
our model. To make it self-contained, we will repeat some of the notational assumptions we
have been making throughout the main body of the paper. Also, to make the exposition clearer
and give the reader an idea of the dimension of the problem, we will be referring to a specific
number of firms, actions and cardinality of the set of possible market shares which will be the
same as in our empirical application.

Notation recap

There are three firms, producing two products each (four actions per firm). There is also a
generic good that can be chosen by consumers, but its price is exogenously given (hence there
are 7 lagged market shares to keep track of). The vector of publicly observed state variables is
zt = (st−1, at−1). We discretise last period’s market shares into 3 bins, therefore the dimension
of the state space Z is: |Z| = 43 · 37 = 64 · 2187 = 139, 968. For simplicity we will refer to
the action (pHi1 , p

H
i2

) as HH . The payoff function of firm i is:

Πi(at, zt, εit) = πi(ait, a−it, st−1) +
∑
`∈Ai

ζ · εit(`) · 1(ait = `) (S.2.1)

−
∑
`∈Ai

∑
`′ 6=`

AC`′→`
i · 1(ait = `, ai,t−1 = `′)−

∑
`∈Ai

FC`
i · 1(ait = `).

To simplify the notation in the derivations that follow, we will assume that ζ = 1, so that
AC = AC ′, as defined in section 4.1. Otherwise one should divide both sides of (S.2.1) by ζ
and use the prime notation to denote rescaled primitives.
Without loss of generality, we also slightly abuse the notation and let πi(·) absorb FCi. This
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can be done because the component
∑

`∈Ai FC
`
i · 1(ait = `) does not depend on past actions

and will be integrated out in the derivation together with the remainder of the deterministic,
static payoff.
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Derivation of ∆AC

The non-stochastic dynamic payoff from choosing ait = ` is:

v̄i(`, zt) =
∑

a−it∈ ×
j 6=i
Aj

σi(a−it|zt)
[
πi(`, a−it, st−1) + β

∑
zt+1

G(zt+1|st−1, `, a−it) (S.2.2)

·
∫
Vi(zt+1, εt+1)dQ(εi,t+1)︸ ︷︷ ︸

Ṽ (zt+1)

]
−
∑
`′ 6=`

AC`′→`
i · 1(ai,t−1 = `′)

Defining the differences with respect to the reference action HH we have:

∆v̄i(`, zt) = v̄i(`, zt)− v̄i(HH, zt)

=
∑

a−it∈ ×
j 6=i
Aj

σi(a−it|zt)
{
πi(`,a−it, st−1)− πi(HH,a−it, st−1)︸ ︷︷ ︸

∆π`
i (a−it,st−1)

}

+
∑

a−it∈ ×
j 6=i
Aj

σi(a−it|zt)
{
β
∑
zt+1

[
G(zt+1|st−1, `,a−it)−G(zt+1|st−1, HH,a−it)︸ ︷︷ ︸

∆G`(zt+1|a−it,st−1)

]
Ṽ (zt+1)

}

−
∑
`′ 6=`

[
AC`

′→`
i · 1(ai,t−1 = `′)−AC`

′→HH
i · 1(ai,t−1 = `′)

]
︸ ︷︷ ︸

∆AC`
i (ai,t−1)

Using the newly introduced notation, we have:

∆v̄i(`, zt) =
∑

a−it∈ ×
j 6=i
Aj

σi(a−it|zt)
{

∆π`i (a−it, st−1) + β
∑
zt+1

∆G`(zt+1|a−it, st−1)Ṽ (zt+1)︸ ︷︷ ︸
λi(`,a−it,st−1)

}

−∆AC`
i (ai,t−1) (S.2.3)

Thinking back about the dimension of the problem, for each of the three remaining (that is,
excludingHH) actions of firm i, there are 42 ·37 = 16 ·2187 = 34992 λi(`, ∗) terms. Rewriting
(S.2.3) in vector form:

∆v̄i(`, zt) = σi(zt)
′λi(`, st−1)−∆AC`

i (ai,t−1), (S.2.4)

where σi(zt) = [σi(a−it|zt)]a−it and λi(`, st−1) = [λi(`, a−it, st−1)]a−it are 16 × 1 column
vectors. (S.2.4) holds for all of the 139,968 points in the state space. To make things more
explicit, use the fact that zt can be partitioned into (at−1, st−1). Furthermore:

at−1 = {a1
t−1, a

2
t−1, . . . , a

64
t−1}

st−1 = {s1
t−1, s

2
t−1, . . . , s

2187
t−1 }
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For s1
t−1 the system can be written as:

∆v̄i(`, a
1
t−1, s

1
t−1) = σi(a

1
t−1, s

1
t−1)′λi(`, s

1
t−1)−∆AC`

i (a
1
t−1)

...
∆v̄i(`, a

64
t−1, s

1
t−1) = σi(a

64
t−1, s

1
t−1)′λi(`, s

1
t−1)−∆AC`

i (a
64
t−1)

Vectorising again:
∆v̄i(`, s

1
t−1) = σi(s

1
t−1)λi(`, s

1
t−1)−∆AC`

i , (S.2.5)

where v̄i(`, s
1
t−1) = [∆v̄i(`, at−1, s

1
t−1)]at−1 is a 64× 1 vector, σi(s1

t−1) = [σi(at−1, s
1
t−1)′]at−1

is a 64× 16 matrix and ∆AC`
i = [∆AC`

i (at−1)]at−1 is a 64× 1 vector. In matrix notation, for
all st−1, this becomes:

∆v̄i(`) =


σi(s

1
t−1) 0

. . .

0 σi(s
2187
t−1 )


︸ ︷︷ ︸

(2187·64)×(2187·16)


λi(`, s

1
t−1)

...
λi(`, s

2187
t−1 )


︸ ︷︷ ︸

(2187·16)×1

−∆ÃC
`

i (S.2.6)

We will be referring to the block-diagonal matrix containing firm i’s beliefs as σ. It can be
written more compactly as a Kronecker product of an identity matrix I and matrix containing
beliefs:

∆v̄i(`) =

I2187 ⊗


σi(s

1
t−1)

...
σi(s

2187
t−1 )




λi(`, s

1
t−1)

...
λi(`, s

2187
t−1 )

−∆ÃC
`

i

= σiλi(`)−∆ÃC
`

i

Everything we showed so far was for a selected action ` ∈ Ai\{HH}. We can now define
∆v̄i = [v̄i(HL); v̄i(LH); v̄i(LL)]′, so that:

∆v̄i = [I3 ⊗ σi]

λi(HL)

λi(LH)

λi(LL)

−


∆ÃC
HL

i

∆ÃC
LH

i

∆ÃC
LL

i

 (S.2.7)

= Ziλi −∆ÃCi

The dimension of the object on the LHS of (S.2.7) is (139968 · 3 × 1) = 419904 × 1. Define
the following 419904× 419904 projection matrix:

MZ
i = I419904 − Zi(Z

′
iZi)

−1Z′i (S.2.8)

So far we have not discussed ∆ÃCi in detail, but it can be written as: ∆ÃCi = D̃i∆ACi
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where D̃i is a 419904 × κi matrix of zeros and ones which are a natural consequence of the
indicator functions used while defining the profit function. κi is the number of dynamic param-
eters to estimate for firm i and ∆ACi is a κi × 1 vector of parameters to identify. Multiplying
both sides of (S.2.7) by the projection matrix defined in (S.2.8), we have:

MZ
i ∆v̄i = −MZ

i D̃i∆ACi

D̃′iM
Z
i ∆v̄i = −D̃′iMλ

i D̃i∆ACi

∆ACi = −(D̃′iM
Z
i D̃i)

−1(D̃′iM
Z
i ∆v̄i) (S.2.9)

(S.2.9) defines the identifying correspondence for firm i. We can proceed in an identical fash-
ion to recover the parameters for the remaining firms. There is also a straightforward way to
incorporate equality restrictions across firms an estimate {∆ACi}Ni=1 for all firms in one step.

Further identifying restrictions

So far we showed how the structure of the model identifies {∆ACi}Ni=1, that is the vector of
differences in adjustment costs relative to a chosen (baseline) action. For example, with HH
being the baseline action, we identify

∆AC`
i (ai,t−1 = `′) = AC`′→`

i · 1(ai,t−1 = `′)− AC`′→HH
i · 1(ai,t−1 = `′)

Differences are not interpretable as price adjustment costs per se. While it should be straightfor-
ward to see that just assuming that switching from any price regime to HH (all products with
regular/high price) is always costless would be sufficient to recover AC`′→`

i · 1(ai,t−1 = `′)

for all `, `′, the model remains heavily overparametrised without further restrictions. This is
because we are only interested in recovering one parameter per product, which would be inter-
preted as the cost of putting a particular product on promotion. Following our exposition, there
are no reasons to believe that e.g. ACHH→LH

i should be different from ACHL→LL
i – where the

only difference is that the second product was on promotion in t− 1 and t, while in the former
case i was charging regular (high) price for it. Since the adjustment costs should be invariant to
many other combinations of past prices and actions, we spell out three identifying restrictions
below as assumptions R1-3. While this is not the only possible set of assumptions allowing for
point identification of product-specific adjustment costs, we believe that what we propose has
a natural, economically meaningful interpretation.

Assumption (R1). Adjustment costs are incurred only when switching from high to low price.

This assumption effectively sets AC`′→HH
i = 0 for all `′ as well as AC`′→HL

i = 0 and
AC`′→LH

i = 0 if `′ = LL. As discussed above, the first restriction is sufficient to recover
absolute, instead of relative, levels of adjustment costs.
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Assumption (R2). Adjustment cost associated with one product is independent of the current

and lagged promotional status of other products.

R2 is a natural assumption, and allows us to impose equality restriction across a−i,t−1 in the
switching cost part of (1). Finally, consider the situation in which prices of more than one
product of a firm move in the same direction. R3 says that we can express the cost of taking
this action as a sum of individual price adjustments of the products involved:

Assumption (R3). There are no economies of scope associated with price promotions on mul-

tiple products of the same firm.

R1-2 will be sufficient to identify one cost of adjusting prices per product plus the joint cost of
putting more than 1 product on promotion at the same time. R3 can then be used to reduce the
dimension of the parameter vector to equal to the number of products. The identifying power
of our assumptions is summarised by the following proposition:

Proposition 1. Under assumptions R1-2, the matrix D̃i satisfies the requirements of theorem

2 in Komarova et al. (2018) and for each firm one can identify |Ai| − 1 parameters in ACi.

Adding assumption R3 reduces the number of parameters to |Ji|.

We leave the proposition without a proof which amounts to showing that D̃i has a full column
rank when R1-3 are imposed. This can be easily verified numerically. In an earlier version of
the paper, we had a simplified duopoly example where we provided an algebraic expression for
D̃i which made it immediately obvious that the matrix had full column rank. For the sake of
brevity we suppress this result here, but the derivations can be obtained from the authors upon
request.

S.2.2 Discount factor and value function

To estimate the discount factor and subsequently solve the model we have to compute the value
functions associated with each element of the state space. Because our state space is large
and some state variables are effectively continuous it is computationally infeasible to compute
the value function for each state, even with a coarse discretisation of market shares. Likewise
we compute the value function for each of the T = 200 observed states (for each firm in
each supermarket) assuming that value functions can be approximated by a linear function of
functions of state variables. The same approach has been used in Sweeting (2013), Barwick
and Pathak (2015) and Fowlie et al. (2016). Next we discuss the procedures used to estimate
the discount factor.
Using the fact the state transitions in our model are deterministic – see equation (9) – we can
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write the ex ante value function in problem (3) as:

Vi (at−1, st−1) =
∑
at∈Ai

σi (at|at−1, st−1)
{

Π̃i (at, at−1, st−1) + βVi (at, s (at, st−1))
}
,

(S.2.10)
where Vi(zt+1) =

∫
Vi(zt+1, εt+1)dQ(εi,t+1) and Π̃i (at, at−1, st−1) is the (conditional) ex-

pectation of the payoff function Πi (at, at−1, st−1, εit (ait)) with respect to εit when states are
(at−1, st−1) and current actions are at, and s (at, st−1) is the vector of current shares – implied
by equation (9) – when past shares are st−1 and current actions are at. As in Sweeting (2013)
we approximate Vi(zt) using the following parametric function:

Vi(zt) '
K∑
k=1

λkiφki (zt) ≡ Φi (zt)λi, (S.2.11)

where λki is a coefficient and φki (·) is a well-defined function mapping the state vector into the
set of real numbers. In our case, φki (·) are flexible functions of shares and prices of the firms.
In practice, the variables we use to approximate the value functions include (i) (past) actions
of all firms, (ii) second order polynomials of (past) shares of all products, (iii) interactions
between (past) actions and shares of the different products and (iv) second order polynomials
of the interactions between (past) actions and shares. We experimented with third and fourth
order polynomials of shares and interactions between shares and actions but the results did not
change significantly.
Notice that under this formulation solving for the value function requires that one computes
only K parameters (λki’s) for each manufacturer. By substituting this equation into the ex

ante value function we can solve for λi = [λ1i λ2i ... λKi]
′ in closed-form as a function of the

primitives of the model, states and beliefs. Substituting (S.2.11) into (S.2.10) we get:

Φi (at−1, st−1)λi =
∑
at∈A

σi (at|at−1, st−1)
{

Π̃i (at, at−1, st−1) + βΦi (at, s (at, st−1))λi

}
.

To simplify the notation let Π̃∗i (at−1, st−1) and Φ∗i (st−1) be the conditional expectations of
Π̃i (at, at−1, st−1) and of Φi (at, s (at, st−1)) with respect to current actions, respectively. There-
fore, we can rewrite equation above as:

(Φi (at−1,st−1)− βΦ∗i (st−1))λi = Π̃∗i (at−1,st−1) .

Stacking this equation for every possible state in S we have that:

(Φi − βΦ∗i )λi = Π̃∗i ,

S.11



where Φi and Φ∗i are Ns × K matrices that depend on states and beliefs and Π̃∗i is a Ns × 1

vector of expected profits that depends on state, beliefs and parameters, Ns being the number
of states observed in the data. Assuming K < Ns, this expression can be rewritten as:

λi =
[
(Φi − βΦ∗i )

′
(Φi − βΦ∗i )

]−1 [
(Φi − βΦ∗i )

′
Π̃∗i

]
. (S.2.12)

Inserting (S.2.12) into (S.2.11) we obtain the unconditional value functions associated with
problem (3); given the logit assumption on εit we can calculate the probability of each action
solving problem (3). Having estimated adjustment costs outside of the dynamic model and
having calibrated H and marginal costs, the only parameter to be estimated inside the dynamic
model is the discount factor. We do this by choosing the discount factor that minimises the
difference between estimated action probabilities and the probabilities implied by the structural
model, which are defined based on the approximation explained above (see Komarova et al.
(2018)).

S.2.3 Model solution

To solve the model we use an algorithm similar to that described in Sweeting (2013). The
algorithm works as follows:

1. In step s we calculate λ (σs) as a function of the vector of beliefs, σs, substituting equa-
tion (S.2.11) into the ex-ante value function and solving for λ = [λ1 λ2 ... λk] in closed-
form as a function of the primitives of the model, states and beliefs;

2. We use λ (σs) to calculate choice specific value functions for each of the selected states
and the multinomial logit formula implied by the model to update the vector of beliefs,
σ̃;

3. If the value of the euclidian norm ‖σs − σ̃‖ is sufficiently small we stop the procedure
and save σ̃ as the equilibrium vector of probabilities implied by the model, σ̃ = σ∗; if
‖σs − σ̃‖ is larger than the tolerance we update σs+1 = ψσ̃ + (1− ψ)σs, where ψ is a
number between 0 and 1, and restart the procedure.

The tolerance used on ‖σs − σ̃‖ was 10−3 and the value of ψ used to update σs to σs+1 was 0.5.
We have made several attempts using lower values for the tolerance on ‖σs − σ̃‖ and for ψ. All
these attempts generated very similar equilibrium probabilities, but the time to achieve conver-
gence was larger. The initial guess used to start the algorithm, σ0, is equal to the estimated
CCPs evaluated at the corresponding state. To check the robustness of our results to changes
in the initial guess we changed arbitrarily the original initial guess multiplying it by several
factors between 0 and 1. For all our attempts the resulting equilibrium vector of probabilities
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was the same.
For the counterfactuals we have to simulate the model for states that are not observed in the
data – i.e. we need estimates of σ∗ for states that are not in the data. To do this we assumed
that the solution of the model, σ∗, for the relevant counterfactual scenario is a logistic function
of a linear index of states – i.e. the same function that we used to compute the CCPs. Mathe-
matically, let σ∗i (ai = k|z) be the probability that firm i plays ai = k when the state vector is
z. We assume that:

σ∗i (ai = k|z) =
exp (z′γk)∑
k′ exp (z′γk′)

. (S.2.13)

Dividing it by the probability of an anchor choice, say ai = HH , normalising γ1 = 0 and taking
logs we have ln {σ∗i (ai = k|z)}− ln {σ∗i (ai = HH|z)} = z′γk. Then the vector of parameters
γk can be estimated by OLS – one OLS equation is estimated for each ai = k, k 6= HH .
The probability function (S.2.13) and the Markovian transitions for actions and shares are used
to simulate moments implied by the model. Starting from the initial state vector for each firm
in each supermarket we forward simulate 1000 paths of 200 periods of actions and shares and
computed profits for each period by averaging period profits for each path.
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