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Abstract

We propose a model of nonsequential consumer search where consumers and firms differ in

search and production costs respectively. We characterize the equilibrium of the game. The

search cost distribution is first identified by market shares and prices. The production cost

distribution is subsequently identified using a similar strategy to Guerre, Perrigne and Vuong

(2000) as the firms’decisions resemble bidders’decisions in a procurement auction. We show

the firm’s cost density can be estimated at the same convergence rate as the optimal rate in

Guerre et al. uniformly over any fixed subset on the interior of the support; it can be made close
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by Mýsliwski and Rostom (2022). We thank Jaap Abbring, Guiherme Carmona, Hanming Fang, Alessandro Gavazza,

Matt Gentry, Emmanuel Guerre, Kohei Kawaguchi, Tatiana Komarova, Nianqing Liu, Jose Luis Moraga-González,

Lars Nesheim, Áureo de Paula, Joris Pinkse (discussant), Fabien Postel-Vinay, Morten Ravn, Philip Reny, Xiaoxia

Shi, Mikkel Sølvsten, Pai Xu and seminar participants at numerous universities and conferences for helpful comments

and discussions. Any views expressed are solely those of the author(s) and so cannot be taken to necessarily represent

the views of the Bank of England or to state Bank of England Policy. All errors are our own.
†E-mails: mateusz.mysliwski@nhh.no; may.rostom@bankofengland.co.uk fmiessi@gmail.com; danielsju-

nior@gmail.com; s.srisuma@nus.edu.sg

1



to that rate rate when the subset increases to the full support asymptotically. The difference

in rates is due to a pole in the price pdf that we show to be a feature of the equilibrium. We

give two extensions of our model with analogous results. One allows for vertically differentiated

products. The other has an intermediary. Our simulation study confirms theoretical features of

the model. We apply our model to study loan search using UK mortgage data.

JEL Classification Numbers: C14, C57, D83

Keywords: Auctions, Kernel Smoothing, Nonparametric Identification, Search Costs

1 Introduction

Consumer search cost is one of the classic explanations for why homogeneous goods or services

have different prices. Price dispersion can arise in equilibrium for a search model with minimal

heterogeneity. An influential paper by Burdett and Judd (1983) showed that a continuous pricing

rule can be generated by a mixed strategy Nash equilibrium in a fixed sample1 search model with

complete information consisting of infinitely many identical firms and consumers. There, firms are

identical because they have the same marginal cost of production and consumers draw search costs

from the same distribution. We refer the reader to a survey by Baye, Morgan, and Scholten (2006)

for different rationalizations of price dispersions in search and other models.

Hong and Shum (2006) developed an empirical model based on Burdett and Judd (1983). They

showed, using just data on prices, nonparametric identification of the firms’marginal costs and parts

of the distribution of consumer search costs. Their strategy can also be used to identify an analogous

model with finite number of firms (Moraga-González and Wildenbeest (2008)). Identification of

the search distribution in these papers is only partial as parts of the support of search cost cannot

be identified. Moraga-González, Sándor and Wildenbeest (2013) showed identification on the full

support is possible if additional price data from other equilibria are available.

In this paper we propose an empirical model of fixed sample search that allows for heterogeneity

across firms as well as consumers. We assume there are a finite number of firms who draw marginal

costs from some continuous distribution. Costs are private and firms compete in prices in an incom-

1In a fixed sample (or nonsequential) search consumers decide from the onset how many price quotes to search for.

This stands in contrast to sequential search. The two models are not nested. Morgan and Manning (1985) show the

fixed and sequential search models can be optimal in different circumstances. The fixed search model may be more

suitable, for example, in applications where time is a factor so that buyers prefer to gather information quickly. Some

recent empirical studies found that nonsequential search models provide a better approximation to consumers’search

behavior observed in real life (De Los Santos et al. (2012), Honka and Chintagunta (2017)).
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plete information environment. We analyze both the theoretical and empirical aspects of this model.

We make the following contributions:

(i) Provide a system of equations that characterize non-degenerate pure strategy Bayesian-Nash

equilibria (BNE) in the model via a fixed-point. This is useful for solving the model particularly for

the purpose of counterfactual studies.

(ii) Show both the marginal cost distribution of firms and search cost distribution of consumers

can be nonparametrically identified from data on price and market share. Our identification strategy

leads to closed-form expressions in terms of the observables that suggest easy to compute estimators.

(iii) Construct a nonparametric estimator for the density of the firm’s marginal cost that achieves

optimal convergence rate uniformly on any fixed subset in the interior of the support. A slight

modification of this estimator can achieve a convergence rate as close to the optimal rate as we like

if the subset expands to the whole support. The difference in uniform rates on fixed and expanding

support is due to an interesting feature of the equilibrium price density. Our contribution here is a

technical one as we show how a two-step density estimator can obtain a near optimal rate when it

relies on a preliminary density estimator that estimates an unbounded density.

We provide two motivations for incorporating heterogeneity amongst firms. First, many appli-

cations involve only a few firms. It is natural for firms to have different production technologies

that are private information in an oligopolistic environment. Another reason is that heterogeneity

in firms’is an agnostic way to account for a degree of product differentiation of goods and services

that is unobservable (or deemed inconsequential at the time of purchase) to consumers but affects

how firms set the price.2 This conceptually expands the scope of applications of our search model.

While we generalize the model in Moraga-González and Wildenbeest (2008), by allowing hetero-

geneous firms, due to the information structure, our model is closer to an earlier work by MacMinn

(1980). MacMinn assumed firms differ by drawing costs from a uniform distribution. He derived

a partial equilibrium result in terms of the optimal pricing rule for firms when all consumers are

pre-assigned to search a fixed number of times (cf. Pereira (2005)). Our analysis generalizes his

setup because we do not impose any parametric assumption on the marginal cost’s distribution and

we endogenize consumer search. The decision problem for our firms resembles that of a first-price

procurement auction where each bidder has to form an expectation on the number and identity of

her competitors. The similarities between search and auction models have been well documented

in the theoretical literature, e.g., see McAfee and McMillan (1998) in a mechanism design context;

other applications include some job search models from the labor literature.3

2For example, online sellers of second-hand books or music records have private information about the actual

condition of the item that goes beyond the description provided in the offer because they physically own the product.
3Well-known labor applications include Postel-Vinay and Robin (2002) and Cahuc, Postel-Vinay and Robin (2006)
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As discussed below, identification of our model does not seem possible with price data alone. We

exploit the restriction imposed by market shares and price to identify consumers’search distribution.

This idea is analogous to linking market shares to choice probabilities, which is the starting point for

the identification argument used in the literature on demand for differentiated products (see Berry

and Haile (2014)). We show that market shares relate to the equilibrium proportions of consumer

search linearly in expectation conditional on price. These proportions can be recovered by solving

a linear equation. Following the insight of Hong and Shum (2006), the proportions can be used to

identify (finite points of) the search cost distribution. They are also an important ingredient for

identifying firm’s marginal cost distribution. Our approach on the latter is similar to how Guerre,

Perrigne and Vuong (2000, hereafter GPV) identify the distribution of the bidder’s latent valuation

in a first-price auction model. In particular, we derive the inverse of the equilibrium pricing function

explicitly and use it to recover firms’latent costs from observed prices. Our identification strategy is

constructive. The parameters of interest can be written explicitly in terms of the joint distribution

of observed variables. They can be estimated in closed-form without numerical optimization.

The non-degenerate equilibrium price distribution has an interesting feature. Our analysis reveals

its probability density function (pdf) generally has a pole at the upper support. I.e., the pdf asymp-

totes to infinity at that point. Intuitively this happens because there are consumers who search only

one time and will pay whatever price the firm charges up to their valuation of the good. Correspond-

ingly, firms have an incentive to charge close to that price. Poles also appear in other structural

models such as the equilibrium distributions of bids in a first price auction with binding reserved

price (see Section 4 in GPV) and wages in a job search model (Bontemps, Robin and van den Berg

(2000)). These authors show their respective estimators of bidder’s valuation and firm’s productivity

densities attain the optimal uniform convergence rates derived in GPV on any fixed interval in the

interior of the support. Our density estimator of the firm’s costs achieves the same rates. The pole,

however, prevents the optimal convergence rates of these estimators to hold over intervals that ex-

pand towards it. We apply the strategy in Srisuma (2023), who studied convergence rates of density

estimators when there is a pole, to construct an estimator that can achieve any uniform convergent

rate that is slower than the optimal benchmark (without a pole) where uniformity is taken over a

suitably expanding support that increases to the full support asymptotically.

We provide two extensions of our baseline model where our closed-form identification and con-

vergence results apply. One is when there is vertical product differentiation known to consumers and

firms but not to the econometrician. This model can be seen as an incomplete information coun-

who model on-the-job search as a sequential auction over the worker between the current and prospective employer.

A job search model that is closer to ours is the work by Bontemps, Robin and van den Berg (1999) as they allow for

heterogeneous opportunity costs of keeping jobs among workers and continuous productivity among firms.
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terpart to the model in Wildenbeest (2011) that uses quality to explain systematic price differences

between firms. The other is a model with an intermediary (i.e., a broker), where consumers with

very high search costs purchase through an intermediary who conduct an exhaustive search for a fee.

Our latter model is inspired by a recent empirical model proposed by Salz (2020).

There are noteworthy similarities and differences between Salz’s model and ours. Salz treats the

search and broker markets separately in his model. When there is no intermediary his search model

is the same as ours. In the pure search setting, Salz’s numerical exercise (Appendix B.1) indicates

one cannot identify a search model with heterogeneous consumers and firms using price data alone.

With an intermediary present, Salz showed search cost distribution can be identified if the firms’cost

distribution is known a priori. It is plausible to assume the knowledge of firms’cost distribution in

applications where the same firms in both the search and broker markets4. We combine the search

and broker market in one framework in anticipation of our application where there are no separate

physical markets. Our identification strategy, which uses market share and price, can identify a

search model with or without an intermediary.

For the ease of notation and clarity of idea, the paper presents the identification arguments

and theoretical results in the setting where there are no observable characteristics, and each firm

charges every consumer the same price. The identification results immediately extend conditional

on observables. Variables that are specific to buyers or firms generate variation in equilibria that

reduces the degree of partial identification as alluded to above (cf. Moraga-González et al. (2013)).

Relatedly, in practice, a parametric model may be preferred as nonparametric estimators suffer from

the curse of dimensionality with many conditioning variables. Parametric features can be easily

embedded in our identification strategy. Identification and estimation a model where consumers get

individualized prices is more challenging. In this case, we propose a parametric-framework where our

identifying assumption and estimation strategy developed for the posted-price case can be used. Our

approach can also be applied to models with vertically differentiated products or an intermediary.

Our numerical studies consist of a Monte Carlo simulation and an empirical application. The

simulation study confirms the pole exists and shows nonparametric estimators that ignore the pole

can perform poorly in its vicinity. Our application uses mortgage data from the UK to estimate a

model with mortgage brokers playing the role of intermediaries. The latter involves a rich dataset

and we estimate it parametrically.

We organize the rest of the paper as follows. Section 2 presents the model and characterizes the

equilibrium of the game. We give identification results in Sections 3 and show how they lead to

estimators with desirable properties in Section 4. Section 5 studies two extensions of our baseline

4This is the case in his application where auctions took place in the broker market. Salz had the auction data and

could identify the cost distribution directly using GPV.
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model. Section 6 and 7 contain a Monte Carlo exercise and empirical application respectively. Section

8 concludes with some discussions. The proofs of all results not given in the main text can be found

in the Appendix.

2 Model

Consider a model in which there is a unit mass of consumers and a finite number of firms. Each

consumer has an inelastic demand for a single unit of a good supplied by the firms. Consumers differ

by search costs. They have a belief on the price distribution and employ a nonsequential search

strategy to decide on the number of firms to visit and purchase at the lowest price. Firms differ by

production costs. They form beliefs about consumer search behavior and competing firms’pricing

strategies, and set their price to maximize expected profits.

The primitives of our search model are G (·) and H (·) that respectively represent the search cost
cdf and production cost cdf. The number of firms, denoted by I, is finite and known. We model

consumers in the same way as Moraga-González and Wildenbeest (2008), Moraga-González, Sándor

and Wildenbeest (2013), and Sanches, Silva and Srisuma (2018). These only differ from Hong and

Shum (2006) in that the latter assumed I is infinite. We describe the decision problem and the best

response for the consumers in Section 2.1. The aforementioned papers assume firms have identical

production costs and that is common knowledge. We assume costs differ across firms and they are

private information. We describe the firms’decision problem and derive their best response in Section

2.2. We define the equilibrium of our game in Section 2.3.

2.1 Consumers

All consumers have the same valuation of the object at some finite and positive P . Each consumer

draws a search cost c, which is assumed to be a continuous random variable support on
[
C,C

]
⊂ R+

with cdf G (·). A consumer with search cost c faces the following decision problem when a purchase

is always made:

min
1≤k≤I

ck + EF
[
P(1:k)

]
.

We use P(k:k′) to denote the k−th order statistic from k′ i.i.d. random variables of prices with some

arbitrary distribution; P(1:k) denotes the minimum of such k prices. The game is symmetric as all

firms have equal probability of being found. We use EF [·] to denote an expectation where the random
prices have distribution described by the cdf F (·).
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Consumer’s Best Response

The marginal saving from searching one more firm after having searched k firms is:

∆k (F ) ≡ EF
[
P(1:k)

]
− EF

[
P(1:k+1)

]
. (1)

∆k (F ) is non-increasing in k because EF
[
P(1:k)

]
is non-increasing in k. When price has a differen-

tiable cdf, EF
[
P(1:k)

]
is strictly increasing and

∆k (F ) =

∫
F (p) (1− F (p))k dp. (2)

The optimal behavior for a consumer that draws c > ∆1 (F ) is to search once and search k > 1 if

c ∈ [∆k (F ) ,∆k−1 (F )). For the purpose of defining equilibrium (see below), we can state the best

response for consumers in terms of proportions of consumer search. In what follows, we use F to

denote a set of all price cdfs and SI−1 to denote a unit simplex in RI+.

Lemma 1. A consumer’s best response is a map σD : F → SI−1 such that for any F in F ,

σD (F ) =


1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

G (∆I−1 (F ))

for k = 1

for 1 < k < I

for k = I

. (3)

where {∆k}I−1k=1 is defined in (1).

Note that equation (3) holds irrespective whether the first price is free or not. The key feature

of the best response in Lemma 1 is we can sort consumers so that those drawing higher costs cannot

search more than those with lower costs. Such structure is accommodated by non-linear cost functions

that allow some economy or dis-economy of scale if one has a prior knowledge to impose them.5

5For example, suppose ∆χ (c, k) = χ1 (c)χ2 (k) where χ1 is strictly increasing and χ2 is positive. This includes the

linear cost as a special case when χ1 (c) = c and χ2 (k) = 1. If {∆k/χ2 (k)}I−1k=1 is strictly decreasing, then equation

(3) in Lemma 1 can be generalized to:

σD (F ) =

{
1−G

(
χ−11 (∆k (F ) /χ2 (k))

)
G
(
χ−11 (∆k−1 (F ) /χ2 (k − 1))

)
−G

(
χ−11 (∆k (F ) /χ2 (k))

) for k = 1

for k > 1
,

and the proof strategy for Proposition 1 remains applicable. To see how ∆χ accommodates both economy and dis-

economy of scale on search: (i) suppose χ2 is increasing (dis-economy of scale case) then {∆k/χ2 (k)}I−1k=1 is strictly

decreasing for any ∆k that comes from a non-degenerate price distribution; (ii) if χ2 is decreasing (economy of scale

case) then {∆k/χ2 (k)}I−1k=1 can be strictly decreasing for some price distribution that needs to be determined on a

case-by-case basis.
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2.2 Firms

Firm i draws a marginal cost of production Ri. Ri is assumed to be a continuous random variable

supported on
[
R,R

]
⊂ R+ with cdf H (·) where R is finite. Firm costs are private information that

are independent from each other. Under symmetry, firm i then faces the following decision problem:

max
p

Λ (p,Ri;q) , where

Λ (p,Ri;q) = (p−Ri)

I∑
k=1

qk
k

I
P
[
P(1:k−1) > p

]
.

Here q = (q1, . . . , qI)
> denotes a vector in SI−1, where qk denotes the proportion of consumers

searching k firms. The term k
I
is the probability that firm i gets included when k firms are sampled.

Note that when qI = 1, our firm’s decision problem is the same as the bidder’s problem in a standard

first-price procurement auction.

Firm’s Best Response

We consider a pricing strategy β :
[
R,R

]
→
[
P , P

]
⊂ R that is strictly increasing almost everywhere

and satisfies β
(
R
)

= R. The latter is the zero profit condition. We assume R = P , so that firms

always produce and a purchase is always made. For any q ∈ SI−1, we can define Λ∗ (·;q) to be the

value function for a representative firm when all players are assumed to employ a strictly increasing

optimal pricing strategy that we denote by β (·;q). We denote its inverse, β−1 (·;q) by ξ (·;q).

Λ∗ (r;q) = (β (r;q)− r)
I∑

k=1

qk
k

I
(1−H (ξ (β (r;q) ;q)))k−1 .

Then, by the envelope theorem (Milgrom and Segal (2002)),

d

dr
Λ∗ (r;q)

∣∣∣∣
r=R

= −
I∑

k=1

qk
k

I
(1−H (R))k−1 , and

Λ∗
(
R;q

)
− Λ∗ (R;q) = −

I∑
k=1

qk
k

I

∫ R

s=R

(1−H (s))k−1 ds.

Solving this gives the solution of the firm’s maximization problem, where for all r:

β (r;q) = r +

∑I
k=1 qkk

∫ R
s=r

(1−H (s))k−1 ds∑I
k=1 qkk (1−H (r))k−1

. (4)

It can be verified that β (·;q) is continuous and non-decreasing on
[
R,R

]
as well as satisfying

β
(
R
)

= R. Furthermore, suppose H (·) is differentiable with a positive pdf, h (·). Differentiating

7



the expression above gives,

β′ (r;q) =
h (r)

(∑I
k=2 qkk (k − 1) (1−H (r))k−2

)(∑I
k=1 qkk

∫ R
s=r

(1−H (s))k−1 ds
)

(∑I
k=1 qkk (1−H (r))k−1

)2 . (5)

This shows β (·;q) is strictly increasing on
[
R,R

]
whenever q1 < 1 and β (r;q) = R for all r when

q1 = 1.

We define the firm’s best response to the consumers in terms of the distribution of β (Ri;q).

Lemma 2. The firm’s best response is a map σS : SI−1 → F such that for any q in SI−1, σS (q) is

the cdf of β (Ri;q) where β (·;q) is defined as in (4).

2.3 Equilibrium

We define a symmetric equilibrium for our game by any pair of consumer search proportions and

induced cdf for firm’s pricing strategy that simultaneously satisfy the best responses on both the

demand and supply side.

Definition 1. A pair (q, F ) ∈ SI−1×F is a symmetric equilibrium if q = σD (F ) and F = σS (q),

where σS (·) and σD (·) are defined in Lemmas 1 and 2 respectively.

An equilibrium with degenerate price distribution always exists in our model. This occurs when

all consumers search once and all firms set the monopoly price, i.e. βM (r;qM) = R for all r. I.e.,

qM is such that q1M = 1 and qkM = 0 for k 6= 1 (cf. Diamond (1971)). Such equilibrium is not

suitable in many applications where prices differ. We focus on the case when β (·;q) is strictly

increasing. Theorem 1 characterizes such equilibria by q that satisfies (3) and (4) simultaneously.

Theorem 1. In a symmetric equilibrium (q, F ) ∈ SI−1 × F , where the equilibrium pricing strategy

is strictly increasing, q satisfies the following system of equations:

qk =

 1−G
(∫
F (p) (1− F (p)) dp

)
for k = 1

G
(∫

F (p) (1− F (p))k−1 dp
)
−G

(∫
F (p) (1− F (p))k dp

)
for 1 < k < I

, (6)

where F (p) = H (ξ (p;q)) for all p ∈
[
P , P

]
.

The characterization above shows that an equilibrium can be summarized by a fixed-point, which

is useful for solving the model. In general there may more multiple equilibria. We are not aware of

a uniqueness result in this context.
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In subsequent sections we consider the econometric problem of identifying and estimating the

model primitives from data generated from a particular equilibrium. We will henceforth drop the

indexing arguments of equilibrium objects that are made explicit in this section for the purpose of

defining best response and equilibrium. E.g. β (·;q) becomes β (·), EF [·] becomes E [·] etc.

3 Nonparametric Identification

We assume to observe {(Yim, Pim)}I,Mi=1,m=1 where Yim is observed market share and Pim is price of

firm i in market m such that the data is generated from a single equilibrium. We distinguish Yim
from the theoretical market share. We formally define both below. Here M is the total number of

markets and we will use a large M asymptotics framework.

Assumption D. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that:

(i) there exists (q, F ) ∈ SI−1 × F with q1 ∈ (0, 1) so that Pim = β (Rim) ≡ β (Rim;q) where

β (·;q) has been defined in (4) and {Rim}I,Mi=1,m=1 is i.i.d. with a continuous density that is positive
and finite almost everywhere on

[
R,R

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is i.i.d. such that the joint distribution of (Yim, Pim) satisfies,

E [Yim|Pim] =
I∑

k=1

qk
k

I
(1− F (Pim))k−1 . (7)

Assumption D(i) assumes observed prices are a random sample from an equilibrium of a search

model. q1 < 1 ensures β (·;q) is strictly increasing and price has a continuous distribution. Having

q1 = 0 does not affect our identification strategy and it simplifies our asymptotic analysis. However,

we expect q1 > 0 to be the norm in many applications and it has an econometric implication (due to

the pole in the price density (see Lemma 4(b))). We assume the more diffi cult case is on hand rather

than having to treat two separate cases. Equation (7) in Assumption D(ii) states a defining property

of market shares as the RHS of the equation has the interpretation of the ex-ante probability of firm

i winning a sale by setting price to be Pim. Assumption D(ii) also assumes shares across markets are

i.i.d., but it allows shares to be correlated within a market.

Observed and theoretical market shares generally differ. The former is an aggregation of decisions

from a finite number of consumers and the latter aggregates decisions from a continuum of consumers.

To define these shares formally, omitting the market index, we denote the search cost for consumer b

by cb and let Ck := [∆k,∆k−1] for k > 0 where {∆k}I−1k=0 denote the search costs where consumers are

indifferent in making k and k+1 searches. Let Dbi, `bi, and `biA be binary variables that takes value 1

if consumer respectively b purchases from firm i, searches only at firm i, and searches at firm i along

9



with k− 1 other firms in the set A ∈ I ik :=
{
A =

⋃
j∈I\{i} {j}

∣∣∣ |A| = k − 1
}
⊆ I := {1, . . . , I}. The

micro-foundation for market share of firm i is based on an individual’s purchasing decision,

Dbi = `bi1 [cb > ∆1] +
I∑

k=2

∑
A∈Iik

`biA1

[
cb ∈ Ck, Pi < min

j∈A
{Pj}

]
. (8)

When each firm has an equal chance of being found, it is easy to verify that E [Dbi|Pi] leads to the
expression on the RHS of (7). When Yim is defined as an average of Dbi over B i.i.d. consumers, (7)

follows. As B →∞, by the law of large numbers, Yim converges to the theoretical market share:

Y im :=
q1
CI1

+
I∑

k=2

qk

∑
A∈Iik

1 [Pim < minj∈A {Pjm}]
CIk

,

where CIk := I!
(I−k)!k! . Note that E

[
Y im|Pim

]
= E [Yim|Pim], because

∑
A∈Iik E [Pim < minj∈A {Pjm} |Pim] =

CI−1k−1 (1− F (Pim))k−1 and CI−1k−1/CIk = k
I
. The discrepancy between Yim and Y im thus represents an

approximation error of the model. The error, εim := Yim − Y im, exhibits a property of a classical

measurement error since E [εim|Pim] = 0. Note that
(
Y im, Y jm

)
are correlated as they are jointly

determined by prices and we expect (Yim, Yjm) to be correlated as a consequence.

In Section 3.1 we consider identification on the demand side. We first identify q using (7), based

on {(Yim, Pim)}I,Mi=1,m=1, which can then be used to identify G (·). We identify H (·) in Section 3.2.
For the latter, it suffi ces to show how to recover firm costs, {Rim}I,Mi=1,m=1. In both Sections 3.1 and
3.2 we take F (·) and the joint distribution of (Yim, Pim) for any (i,m) to be known. Both of these

objects are nonparametrically identified under Assumption D when M →∞.

3.1 Consumers

Let Xim be a vector in RI such that (Xim)k = k
I

(1− F (Pim))k−1. We can write (7) as

Yim = X>imq+ εim, (9)

where εim satisfies E [εim|Pim] = 0. We can then identify q as the solution of a least squares problem.

Lemma 3. Suppose Assumption D holds. If E
[
XimX

>
im

]
has full rank then q is identified.

We now treat both q and F (·) as known and use them to identify G (·) at {∆k}I−1k=1

Proposition 1. Suppose Assumption D holds. Then G (∆k) is identified for k = 1, . . . , I − 1.

Proof. From (4), we see that G (∆k) = 1−
∑k

k′=1 qk′ for k = 1, . . . , I − 1. The proof follows since

both {∆k}I−1k=1 and q are identified. In particular, note that ∆k is a functional of F (·) for all k (see
(1) and (2)) and q is identified from Lemma 3. �
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Our identification strategy for q is different to the method used in a complete information model

(Hong and Shum (2006), Moraga-González and Wildenbeest (2008)). Once q is identified, however,

each G (∆k) can be identified in the same way.

Like prior results, G (·) is partially identified as we can identify it at {∆k}I−1k=1. The degree of non-

identification can be reduced if there is exogenous variation across markets. For example, suppose

there are L market types where consumers draw search costs from the same distribution but firms

production costs have different distribution across types and/or the number of firms may vary with

L. Moraga-González, Sándor and Wildenbeest (2013) propose this identification strategy in the

complete information context. The same idea applies to our setting. We illustrate in Section 7 how

to find and exploit such variation empirically.

3.2 Firms

We can identify H (·) by inverting latent production costs from observed prices. Lemma 4 provides

key properties of the price density and gives an explicit formula for the inverse of the pricing strategy

in terms of q and the price distribution.

Lemma 4. Suppose Assumption D(i) holds. Then:

(a) infp∈[P ,P ] f(p) > 0;

(b) limp→P f(p) =∞;
(c) the inverse of the equilibrium pricing strategy, ξ :

[
P , P

]
→
[
R,R

]
, takes the following form

ξ (p) = p−
∑I

k=1 qkk (1− F (p))k−1

f (p)
∑I

k=2 qkk (k − 1) (1− F (p))k−2
, (10)

and ξ
(
P
)

= R.

When q1 = 0, it can be shown that f (·) is bounded away from zero on [P , P ) and f
(
P
)
does not

need to be infinite for ξ
(
P
)

= R.

Proposition 2. Suppose Assumption D holds. Then H (·) is identified.
Proof. Under Assumption D, ξ (·) is identified. Therefore we can recover Rim from ξ (Pim) for all

i,m. �

4 Estimation and Convergence Rates

We now look to estimate h (·) at the best possible convergence rate. We focus on this problem
because h (·) is the most diffi cult object to estimate in our model in the sense that its estimator has
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the slowest convergence rate amongst estimators of other identifiable objects. Along the way, we will

discuss estimators of other parameters in the model. Particularly, parameters on the demand side

can be estimated at the parametric rate and our discussion on them will be brief.

We consider two separate cases. First, we consider the uniform convergence for h (·) over any fixed
closed interval that lies in the interior of

[
R,R

]
. In this case we can provide an estimator for h (·)

that achieves the same optimal convergence rate as the GPV estimator. Second, we consider uniform

convergence over an expanding interval that approaches
[
R,R

]
as the sample size increases. In this

case we will provide another estimator for h (·) that can converge at any slower rate than the one
achievable over a fixed support. The reason for a slower convergence rate is the latter accounts for

the pole (limp→P f (p) =∞). Our estimator for h (·) in both cases will be based on kernel smoothing
using estimated {Rim}I,Mi=1,m=1, which is to be obtained through the estimated inverse of the pricing
function (see (10)). In particular, the inverse of the pricing function depends on (q, F (·) , f (·)) that
have to be estimated.

To study convergence rates, we have to specify the degree of smoothness of H (·).

Assumption R. H (·) admits upto τ + 1 continuous derivatives on
[
R,R

]
for some τ ≥ 1.

Lemma 5. Suppose Assumptions D and R hold. Then f (·) admits upto τ + 1 continuous derivatives

on
[
P , P

)
for the same τ as in Assumption R.

Lemma 5 says that f (·) has the same degree of smoothness as H (·) everywhere other than at P .
We next define estimators for (q, f (·) , F (·)) and discuss their convergence rates under Assumptions
D and R.

An estimator for F (·)

A natural estimator for F (·) is the empirical cdf, defined as

F̂ (p) =
1

MI

M∑
m=1

I∑
i=1

1 [Pim ≤ p] for all p. (11)

It is well-known from Donsker’s theorem that
√
M
(
F̂ (·)− F (·)

)
converges weakly to a Gaussian

process on
[
P , P

]
. Then by the continuous mapping theorem, supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = Op

(
1/
√
M
)
.

An estimator for q

We suggest to estimate q by least squares. Let Ym = (Y1m, . . . , YIm)>, em = (ε1m, . . . , εIm)> and

Xm be an I × I matrix such that (Xm)ik = k
I

(1− F (Pim))k−1. Vectorize Ym, Xm and em across
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m to form Y =
[
Y>1 : · · · : Y>M

]>
, X =

[
X>1 : · · · : X>M

]>
and e =

[
e>1 : · · · : e>M

]>
respectively.

Then a vector version of (9) is,

Y = Xq+ e.

F (·) is unknown and has to be estimated. Let X̂ be the feasible counterpart of X where F (·) is
replaced by F̂ (·). Then,

q̂ =
(
X̂>X̂

)−1
X̂>Y, (12)

= q+ aM + bM , where

aM =
(
X>X

)−1
X>e,

bM =

((
X̂>X̂

)−1
X̂> −

(
X>X

)−1
X>
)
Y.

Using asymptotic theory for clustered samples (e.g. see Hansen and Lee (2019)), ‖aM‖ = Op

(
1/
√
M
)

as 1
M
X>X = 1

M

∑M
m=1

(∑I
i=1XimX

>
im

)
and 1√

M
X>e = 1√

M

∑M
m=1

(∑I
i=1Ximεim

)
would satisfy

a law of large numbers and central limit theorem respectively. Since
(
X̂>X̂

)−1
X̂> is a smooth

functional of F̂ (·), it can also be verified by applications of the continuous mapping theorem that

‖bM‖ = Op

(
1/
√
M
)
. Thus, ‖q̂− q‖ = Op

(
1/
√
M
)
.

Furthermore, since ∆k is a functional of F (·), we can estimate G (∆k) using q̂ and F̂ (·) based on
the constructive identification result in Proposition 1. Such estimator will be a smooth functional of

F̂ (·) and have a
√
M−convergence rate. Estimating G (·) as a curve is also possible when there are

data from different equilibria that can identify more points on the support of the search cost. In this

case, Sanches, Silva and Srisuma (2018) proposed a series estimator that pooled data across equilibria

based on using estimated∆k and G (∆k) as generated regressor and regressand respectively; they also

derive the convergence rate of such estimator. The same type of estimator can also be constructed

here. We refer the reader to Section 4 of Sanches, Silva and Srisuma (2018) for further details.

An estimator for f (·)

Consider the following kernel density estimator for f (·),

f̂ (p) =
1

MIbf,M

M∑
m=1

I∑
i=1

K

(
Pim − p
bf,M

)
for all p, (13)

where K (·) is a (τ + 1)−th higher order kernel function and bf,M is a bandwidth that is proportional

to the optimal bandwidth that converges to zero at the rate
(
logM
M

) 1
2τ+3 , see Härdle (1991). Let

η∗M ≡
(
logM
M

) τ+1
2τ+3 denote the optimal rate of convergence for density estimation with τ+1 continuous
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derivatives (Stone (1982)). Then it is well-known that

sup
p∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (η∗M) a.s., (14)

for any positive δ.

We summarize the convergence rates of q̂, F̂ (·), and f̂ (·) in a proposition.

Proposition 3. Suppose Assumptions D and R hold. Then for the estimators defined in (11) to

(13):

(a) supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = Op

(
1/
√
M
)
;

(b) ‖q̂− q‖ = Op

(
1/
√
M
)
;

(c) For any positive δ, supp∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (η∗M) a.s.

We next proceed to estimate h (·) using the estimators for q, f (·) and F (·) described above.

An estimator for h (·)

We start by obtaining an estimator for Rim, using

R̂im =

 Pim −
∑I
k=1 q̂kk(1−F̂ (Pim))

k−1

f̂(Pim)
∑I
k=1 q̂kk(k−1)(1−F̂ (Pim))

k−2 for Pim ∈ [P + δ, P − δ]

+∞ otherwise
. (15)

When R̂im < ∞, R̂im is the estimator of Rim based on on the feasible version of (10). In this case,

R̂im is a smooth function of q̂, F̂ (Pim) and f̂ (Pim). Lemma 6 shows the convergence rate of R̂im

is determined by supp∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣. We effectively omit R̂im when Pim /∈ [P + δ, P − δ]

for the purpose of estimating h (·). The omission does not prevent us from attaining the desired

convergence rates because the probability that R̂im = +∞ is zero asymptotically.

Lemma 6. Suppose Assumptions D and R hold. Then,

sup
i,m s.t. R̂im<∞

∣∣∣R̂im −Rim

∣∣∣ = O (η∗M) a.s .

We define our estimator for h (·) as follows:

ĥ (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
R̂im − r
bh,M

)
for any r, (16)
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where K (·) is a kernel function bh,M is the bandwidth. Under the conditions of Theorem 2, the

uniform convergence rate of ĥ (·) is determined by the convergence rate of R̃im.

Theorem 2. Suppose Assumptions D and R hold. Assume the following properties for components

in (16):

(i) K (·) be a symmetric τ−th order kernel with support [−1, 1];

(ii) K (·) is twice continuously differentiable on [−1, 1];

(iii) bh,M is proportional to
(
logM
M

) 1
2τ+3 .

Then for any ς > 0, there exists δ > 0 so that part (c) of Proposition 3 holds such that

sup
r∈[R+ς,R−ς]

∣∣∣ĥ (r)− h (r)
∣∣∣ = O

((
logM

M

) τ
2τ+3

)
a.s .

The rate
(
logM
M

) τ
2τ+3 is equal to η∗M

bh,M
, which is the optimal convergence rate GPV derived in their

paper. This rate is achieved by choosing bh,M that oversmooths relative to the optimal bandwidth

for a τ−times continuously differentiable density function.

Next, we extend the study of uniform convergence rate for an estimator of h (·) over
[
R + ςM , R− ςM

]
for some ςM = o (1). This requires us to provide a rate for an estimator of f (·) over intervals that
expand towards

[
P , P

]
, which turns out to be an unusual problem6 because f (·) has a pole at P

(Lemma 4(b)). A slower convergence rate is expected in the presence of the pole, e.g., as the as-

ymptotic variance and bias of kernel density estimator are respectively pointwise proportional to the

underlying density and its derivatives respectively.

We begin by constructing an estimator for f (·) that can attain any convergence rate slower
than η∗M over a suitably expanding support (cf. (14)), which allows us to estimate h (·) at any rate
slower than

(
logM
M

) τ
2τ+3 over an expanding support (cf. Theorem 2). We use the log-transformation

approach suggested in Srisuma (2023) to estimate f (·). The novelty of his approach is, without
having to specify the divergence rate of f (·), the transformed variable has a bounded density as long
as f (·) satisfies a mild regularity condition. The idea is to then use the back-transformed estimator
to quantify the convergence rate.7

Let P †im ≡ − ln
(
P − Pim

)
. Denote the pdf of P †im by f

† (·) that is positive on [− ln
(
P − P

)
,∞).

By a change of variable, we have f (p) =
f†(− ln(P−p))

P−p for p ∈ [P , P ]. Lemma 7 describes the notion

6One of the standard assumptions used in deriving uniform convergence rate of a kernel density estimator is

boundedness of the underlying density (e.g., see Andrews (1995), Masry (1996), Fan and Yao (2003), Hansen (2008)).
7Srisuma (2023) also discusses other estimators that can obtain similar uniform convergence rates as the one based

on a log-transformation.
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of regularity for f (·) in terms of the existence of a limit at P 8, which implies f † (·) and its derivatives
are bounded (Lemma 8). We can then estimate f † (·) using a standard kernel density estimator
at a η∗M−convergence rate. We multiply this estimator by

(
P − p

)−1
to get the back-transformed

estimator. The back-transformation slows down the convergence rate, which we can control through

the expansion rate of the support.

Lemma 7. Suppose Assumption D(i) holds. Then limp→P
(
P − p

)
f(p) exists.

Lemma 8. Suppose Assumptions D(i) and R hold. Then

(a) f † (·) is bounded;
(b) f † (·) admits upto τ + 1 continuous and bounded derivatives on [− ln

(
P − P

)
,∞) for the

same τ as in Assumption R.

Formally, the back-transformed estimator is defined as follows:

f̃ (p) =
f̂ †
(
− ln

(
P − p

))
P − p

, where (17)

f̂ †
(
p†
)

=
1

MIbf†,M

M∑
m=1

I∑
i=1

K

(
P †im − p†
bf†,M

)
for all p†.

By using a (τ + 1)−th higher order kernel and set bf†,M to be proportional to
(
logM
M

) 1
2τ+3 , we have∣∣∣f̂ † (p†)− f † (p†)∣∣∣ = O (η∗M) a.s. uniformly over any fixed inner proper subset of [− ln
(
P − P

)
,∞).

Since f̃ (p)− f (p) =
f̂†(− ln(P−p))−f†(− ln(P−p))

P−p , we have
∣∣∣f̃ (p)− f (p)

∣∣∣ = O (η∗M) a.s. uniformly over

any fixed inner subset of
[
P , P

]
.

There are two factors that affect the uniform convergence rate of f̃ (·) over [P + δ′M , P − δ′′M ]

when both δ′M and δ′′M are o (1). One is the boundary bias from estimating f † (p) when p† lies

within a bf†,M -neighborhood from − ln
(
P − P

)
. The other is the divergence of

(
P − p

)−1
diverges

as p→ P . We can avoid the boundary effect at the lower boundary by limiting the rate δ′M goes to

zero according to P − exp
(
ln
(
P − P

)
− bf†,M

)
= o(δ′M). We can choose the divergence rate from

the back-transformation. Suppose p→ P at the rate δ′′M , then

sup
p∈[P+δ′M ,P−δ′′M ]

∣∣∣f̃ (p)− f (p)
∣∣∣ = O

(
η∗M
δ′′M

)
a.s.

8The proof of Lemma 7 makes clear that f (·) will be regular at P if h (·) is regular at R (i.e., limr→R
(
R− r

)
h(p)

exists). Assumption D(i) assumes h (·) is bounded, therefore it is regular at R. We can thus replace boundedness with
existence of a limit instead without changing any results. We refer the reader to Srisuma (2023) for further discussions

on this notion of regularity as well as primitive conditions that imply it.
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Thus, we can always find an interval expanding to [P , P ] that f̃ (·)− f (·) converges uniformly over
at any rate that is slower than η∗M . We state this as a proposition.

Proposition 4. Suppose Assumptions D(i) and R hold. Then for any sequence of positive reals

{ηm}
M
m=1 that decreases to 0 such that η∗M = o (ηM), there exists some sequence {δm}Mm=1 that de-

creases to 0 such that supp∈[P+δM ,P−δM ]

∣∣∣f̃ (p)− f (p)
∣∣∣ = O (ηM) a.s.

We can then estimate Rim on using f̃ (·), and use it to estimate h (·) as done previously in (15)
and (16) respectively. Specifically, for any δM > 0 let

R̃im =

 Pim −
∑I
k=1 q̂kk(1−F̂ (Pim))

k−1

f̃(Pim)
∑I
k=1 q̂kk(k−1)(1−F̂ (Pim))

k−2 for Pim ∈ [P + δM , P − δM ]

+∞ otherwise
, (18)

h̃ (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
R̃im − r
bh,M

)
for any r. (19)

The following results are similar to Lemma 6 and Theorem 2. They differ in that the rates do not

reach the optimal rate and they hold over a sequence of expanding intervals.

Lemma 9. Suppose Assumptions D and R hold. Then for any sequence of positive reals {ηm}
M
m=1

that decreases to 0 such that η∗M = o (ηM), there exists some sequence {δm}Mm=1 as described in
Proposition 4 such that

sup
i,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣ = O (ηM) a.s .

Theorem 3. Suppose Assumptions D and R hold. Assume the following properties for components

in (19):

(i) K (·) be a symmetric τ−th order kernel with support [−1, 1];

(ii) K (·) is twice continuously differentiable on [−1, 1];

(iii) bh,M is proportional to
(
logM
M

) 1
2τ+3 .

Then for any ηM that satisfies η∗M = o (ηM) and ηM = O
(
b2h,M

)
, and for ςM that decreases to zero

such that bh,M = o (ςM),

sup
r∈[R+ςM ,R−ςM ]

∣∣∣h̃ (r)− h (r)
∣∣∣ = O

(
ηM
bh,M

)
a.s .

The uniform convergence rate for h̃ (·) is derived over an expanding support that avoids the
boundary effect as well as anticipating the pole effect. We highlight the condition Theorem 3 imposes,
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which is not required in Theorem 2, is ηM = O
(
b2h,M

)
. This is a mild condition to handle the pole.

In particular, this condition is not restrictive when τ ≥ 2. To see this, suppose ηM = η∗MφM for

some φM with limM→∞ φM =∞, then ηM = O
(
b2h,M

)
is equivalent to φM

(
logM
M

) τ−1
2τ+3 = O (1). Since

we are only be interested in φM that diverges to infinity slowly, we can choose it to diverge at an

arbitrarily slow rate.

5 Extensions

We consider two extensions of the nonparametric identification arguments presented in Section 3.

The first allows products to be vertically differentiated that can be useful for modelling systematic

price differences across firms. The second introduces an intermediary that can search on behalf of

consumers at a fee. Our discussions in this section will focus on identification. We will show the

estimation strategy and the results on convergence rates of developed in Section 4 are applicable to

these settings.

5.1 Vertical Product Differentiation

Let firm i’s product is characterized by νi ∈ R, which is a measure of differentiated quality. The
econometrician will observe market share and prices but not quality of the products. The main

modelling assumption employed by Wildenbeest (2011), in a complete information model, is that the

difference between quality and marginal cost is the same for all firms. A natural way to extend his

idea to an incomplete information game is to put a common distribution around νi for all i. We will

show a quasi-symmetric equilibrium, where optimal pricing strategies between firms differ only by

the differences in their qualities, can then be characterized analogously to Theorem 1.

Consumer’s Best Responses

Consumers now value products from different firms differently. The utility they derive from purchas-

ing from seller i is Ui. We assume,

Ui := ν0 + νi − Pi, (20)

where ν0 denotes the common value of the product, νi denotes the valuation of the differentiating

component due to firm i, and Pi denotes its corresponding price. One can, for example, attribute

νi to physical quality or other experience associated with purchasing from firm i. A consumer with

search cost c faces the following decision problem:

max
1≤k≤I

EL
[
U(k:k)

]
− ck.
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A purchase is always made so that ν0 does not enter our analysis, just as it does not in the model

with a homogeneous product. For the moment suppose firms set prices such that {Ui}Ii=1 is a random
sample. Then, for k ≥ 1, let U(k:k) be the maximum of k i.i.d. random variables of utilities and EL [·]
denotes an expectation where the random utilities have distribution described by the cdf L (·).
We denote the expected marginal utility gain from a purchase when a consumer searches one

more firm when she has already searched k − 1 firms by,

Υk (L) := EL
[
U(k:k)

]
− EL

[
U(k−1:k−1)

]
. (21)

We set U(0:0) to be 0. The consumer’s best response is to search once if c > Υ1 (L), and search k > 1

times if Υk−1 (L) < c ≤ Υk (L). Analogous to the discussions in Section 2.1, Υk (L) is positive and

strictly decreasing when the distribution of Ui is non-degenerate.

Firm’s Best Responses

We assume firm i’s production cost consists of a sum of deterministic (determined by quality) and

random components:

Ri = νi +R0i,

where R0i has cdf H0 (·) supported on R0 ∈
[
R0, R0

]
for some R0 > R0 > 0. We denote the support

of Ri by Ri :=
[
νi +R0, νi +R0

]
. We assume firm costs are independent draws to preserve the

independent value environment. Subsequently {R0i}Ii=1 is an i.i.d. sequence of random variables.

We restrict our attention to quasi-symmetric pricing strategies where firms’strategies are affi ne

translations from one another. Denote firm i’s pricing strategy by βi (·;q) : Ri → Pi, where Pi =[
νi + P 0, νi + P 0

]
and βi (·;q) = νi + β0 (·;q) and β0 (·;q) : R0 → P0 =

[
P 0, P 0

]
. We denote the

valuation-cost markup by Xi := νi − Ri. By construction Xi = −R0i and {Xi}Ii=1 is i.i.d. across
firms. Since Ui = νi − Pi, we can equivalently study the firm i’s profit maximization problem where

the firm sets the level of utility consumers would get from buying its product instead of setting prices.

I.e., for any xi ∈
[
−R0,−R0

]
, consider

max
u

Γ (u, xi;q) , where

Γ (u, xi;q) = (xi − u)
I∑

k=1

qk
k

I
P
[
U(k−1:k−1) ≤ u

]
.

Suppose a solution to the maximization problem above exists and let µ (xi;q) := arg maxu Γ (u, xi;q)

for any (xi,q). We assume that µ (xi;q) to be increasing in xi and satisfies the boundary condition

that µ
(
−R0;q

)
= R0. Under this premise, we can apply the arguments used to obtain (4) to show
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that

µ (x (r0i) ;q) = x (r0i)−

I∑
k=1

qkk
∫ R0
s=r0i

(1−H0 (s))k−1 ds

I∑
k=1

qkk (1−H0 (r0i))
k−1

, (22)

for any r0i ∈ R0 and x (r0i) := −r0i. Therefore {µ (x (R0i) ;q)}Ii=1 is an i.i.d. sequence of random
utilities that firms offer to the consumers upon drawing {R0i}Ii=1 as a best response given q.
For any ri = νi+ r0i, since µi (xi (ri) ;q) = νi−βi (ri;q), it follows that βi (ri;q) = νi+β0 (r0i;q)

where,

β0 (r0i;q) = r0i +

I∑
k=1

qkk
∫ R0
s=r0i

(1−H0 (s))k−1 ds

I∑
k=1

qkk (1−H0 (r0i))
k−1

. (23)

β0 (·;q) has an identical structure to β (·;q) as defined in (4). Therefore the properties of each firm’s

pricing strategy derived here are the same as that of the homogeneous product case other than being

shifted by a constant νi. In particular β0 (·;q) is strictly increasing when q1 < 1, and its inverse

takes the same form as (10) in Lemma 5.

Equilibrium

We define a quasi-symmetric equilibrium where players using pricing strategies that are affi ne trans-

lation from each other. Theorem 4 gives a characterization of the equilibrium (cf. Theorem 1). Its

proof and the definition of a quasi-symmetric equilibrium are in the Appendix.

Theorem 4. In a quasi-symmetric equilibrium (q, F0) ∈ SI−1 × F0, where the equilibrium pricing

strategies are strictly increasing, q satisfies the following system of equations:

qk =

 1−G
(∫
F0 (p) (1− F0 (p)) dp

)
for k = 1

G
(∫

F0 (p) (1− F0 (p))k−1 dp
)
−G

(∫
F0 (p) (1− F0 (p))k dp

)
for 1 < k < I

,

where F0 (p) = H0 (ξ0 (p;q)) for all p ∈
[
P , P

]
and ξ0 (·;q) is the inverse of β0 (·;q).

5.1.1 Identification

We assume our data satisfy the following conditions.

Assumption DE1. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that:
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(i) there exists (q, F0) ∈ SI−1 ×F with q1 ∈ (0, 1) so that Pim = νi + β0 (R0im;q) where β0 (·;q)

has been defined in (23) and {R0im}I,Mi=1,m=1 is i.i.d. with positive and finite density almost everywhere
on
[
R0, R0

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is i.i.d. such that the joint distribution of (Yim, P0im) satisfies,

E [Yim|P0im] =

I∑
k=1

qk
k

I
(1− F0 (P0im))k−1 . (24)

Assumption DE1 has an analogous interpretations to Assumption D. If we observe {νi}Ii=1, we can
construct {P0im}I,Mi=1,m=1, then identification immediately follows the same steps described in Section
3. In particular: (i) use {P0im}I,Mi=1,m=1 to identify f0 (·) and F0 (·); (ii) identify q from (24) (cf.

Lemma 3), combine it with {Υk}I−1k=1, we can identify {G (Υk)}I−1k=1 (cf. Proposition 1); (iii) recover

{R0im}I,Mi=1,m=1 from

R0im = P0im −
∑I

k=1 qkk (1− F0 (P0im))k−1

f0 (P0im)
∑I

k=2 qkk (k − 1) (1− F0 (P0im))k−2
, (25)

cf. (10), which in turn identifies H0 (·) (cf. Proposition 2).
We, however, do not observe {νi}Ii=1. The key insight to proceed is that optimal search behavior

is determined by the shape of the equilibrium price distributions, which is the same for all firms, and

not their locations that may differ. Subsequently, relative utilities are identified by relative demeaned

prices. To see this recall Uim = νi − Pim, so for all i and j:

Uim − Ujm = P0jm − P0im = ωjm − ωim, (26)

where ωim denotes Pim − E [Pim], thus the second equality above follows from E [P0im] = E [P0jm].

Our identification results rely on the distribution of ωim, which identified. We denote the pdf

and cdf of ωim by w (·) and W (·) respectively. Note that F0 (·) and W (·) are parallel to each other
by construction. A useful relation that immediately follows from inspecting (26) is that the cdfs of

P0im and ωim coincide when evaluated at their respective points of realizations. We state this as a

lemma. We use it to identify the consumer search distribution.

Lemma 10. Suppose Assumption DE1 holds. Then F0 (P0im) = W (ωim) for all i and m.

Proposition 5. Suppose Assumption DE1 holds. Then G (Υk) is identified for k = 1, . . . , I − 1.

Proof. By Lemma 10, any q that satisfies (24) also satisfies

E [Yim|ωim] =
I∑

k=1

qk
k

I
(1−W (ωim))k−1 .
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We can then identify q in closed-form as done in Lemma 3. From (21), we can also identify Υk in

the same way we identify ∆k in Section 3.1 by replacing the raw prices with the demeaned prices.

We can then apply the argument used to prove Proposition 1 to identify {G (Υk)}I−1k=1 from q and

{Υk}I−1k=1. �

On the supply side, we can identify the shape of the distribution of R0im but not its location.

This is clear from (25) because we can only identify the shape of the distribution of P0im. More

precisely, what we can identify is the distribution of ρim := R0im − E [P0im].

Proposition 6. Suppose Assumption DE1 holds. Then the distribution of ρim is identified.

Proof. Replace (P0im, f0 (P0im) , F0 (P0im)) in the RHS of (25) by (ωim, w (ωim) ,W (ωim)) to con-

struct ρim. Then apply Lemma 10.�

Propositions 5 and 6 show we can use {ωim}I,Mi=1,m=1 instead of price to identify the demand and
supply side parameters in the same way as done in Sections 3.1 and 3.2 respectively. Analogous esti-

mators and results on convergence rates discussed in Section 4 are therefore immediately applicable.

It is worth commenting that not knowing {νi}Ii=1 does not limit the scope of counterfactual studies
relative to the model with homogenous goods. This is because consumers in our model bear the cost

of quality differences and get compensated in equal amount in terms of utility. Thus we can study

changes in search behavior and the price distribution associated with quality adjusted production

costs. We can identify these effects by comparing the difference of price distributions generated from

the old and new equilibria where firms are treated symmetrically such that every firm draws cost

from the same distribution as ρim.

5.2 Intermediary

Next, we assume there is an intermediary, which we will also refer to as broker. Our model is closely

related to Salz (2020). We adopt his key assumption that a consumer with very high cost consumers

prefer to pay a broker to search. The broker then performs an exhaustive search and gives such

consumer the lowest price.

Consumer’s Best Responses

Previously we saw that it is optimal for a consumer that draws c > ∆1 (F ) to search once. If a

broker charges φ to conduct an exhaustive search for such consumer, the cost that makes a consumer

indifferent between searching once or delegating search solves: EF [P ] + c = φ + EF
[
P(1:I)

]
. Let us

denote such cost by ∆0 (F ) := φ + EF
[
P(1:I)

]
− EF [P ]. We take φ to be exogenous. Following Salz
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(2020), we focus on an equilibrium where c > ∆0 (F ) has positive probability and ∆0 (F ) > ∆1 (F ).

This allows us to generalize Lemma 1 and define a consumer’s best response to be a map σ̃D : F → SI

such that for any F in F ,

σ̃D (F ) =


1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

G (∆k (F ))

for k = 0

for 0 < k < I

for k = I

.

Firm’s Best Response

Let us denote the proportion of consumers that use a broker by q0 < 1. Firm i chooses price to

maximize Λ̃ (p,Ri; q0,q) where:

Λ̃ (p,Ri; q0,q) := (1− q0) (p−Ri)

I∑
k=1

qk
k

I
P
[
P(1:k−1) > p

]
+ q0 (p−Ri)P

[
P(1:I−1) > p

]
,

where q now represents a vector of proportions of consumers that search a different number of firms,

conditioning on them searching, so that (q0,q) ∈ [0, 1)× SI−1. The two additive components on the
RHS in the display above are firm i’s expected payoffs from the consumers that search and use an

intermediary respectively. It will be useful to define the vector q̃ (q0,q) := (q̃k (q0,q))Ik=1 ∈ SI−1 with
the following components,

q̃k (q0,q) = (1− q0) qk for 0 < k < I and q̃I (q0,q) = (1− q0) qI + q0. (27)

Then, we have for all (p, r) and (q0,q),

Λ̃ (p, r; q0,q) = (p− r)
I∑

k=1

q̃k (q0,q)
k

I
P
[
P(1:k−1) > p

]
= Λ (p, r; q̃ (q0,q)) ,

where Λ (·) is the same function used in Section 2.2. Subsequently, the solution to the maximization
problem above is given by β (·; q̃ (q0,q)) (see (4)) where β (·; q̃ (q0,q)) is strictly increasing when

q̃1 (q0,q) < 1. Notably, its inverse takes the same form as (10) given in Lemma 5 and the character-

istics of the equilibrium price distribution of Lemma 7 applies when q̃1 (q0,q) > 0.

Equilibrium

We characterize an equilibrium for a search model with an intermediary as follows.

Theorem 5. In a symmetric equilibrium (q0,q, F ) ∈ [0, 1) × SI−1 × F , where ∆0 (F ) > ∆1 (F )

and the equilibrium pricing strategies are strictly increasing, (q0,q) satisfies the following system of
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equations:
q0

(1− q0) qk
(1− q0) qI

=

=

=

1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

G (∆k (F ))

for k = 0

for 0 < k < I

for k = I

,

where F (p) = H (ξ (p; q̃ (q0,q))) for all p ∈
[
P , P

]
and ξ (·; q̃ (q0,q)) is the inverse of β (·; q̃ (q0,q)).

Identification

We can apply the same identification strategy as in Section 3 when q0 is known. We make the

following assumptions.

Assumption DE2. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that for a known

q0 ∈ (0, 1):

(i) there exists (q, F ) ∈ SI−1 × F with q1 ∈ (0, 1) so that Pim = β (Rim; q̃ (q0,q)) where β (·;q)

and q̃ (q0,q) are defined in (4) and (27) respectively, and {Rim}I,Mi=1,m=1 is i.i.d. with positive and
finite density almost everywhere on

[
R,R

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is i.i.d. such that the joint distribution of (Yim, Pim) satisfies,

E [Yim|Pim] =
I∑

k=1

q̃k (q0,q)
k

I
(1− F (Pim))k−1 . (28)

The known q0 assumption is suitable when the proportion of consumers who used a broker can

be identified directly from the data. Examples of this include Salz (2020) and our application in

Section 7. Other than assuming q0 ∈ (0, 1), the discussions on Assumption D are applicable to the

remainder of Assumption DE2.

Under Assumption DE2, q̃ (q0,q) is identified as long as E
[
XimX

>
im

]
has full rank (Xim is defined

as in Section 3.1). We can then identify {G (∆k)}I−1k=0 as in Proposition 1.

Proposition 7. Suppose Assumption DE2 holds and E
[
XimX

>
im

]
has full rank. Then G (∆k) is

identified for k = 0, 1, . . . , I − 1.

Proof. First apply Lemma 3 to identify q̃ (q0,q). Since q0 is known, q is identified from q̃ (q0,q).

Subsequently, G (∆0) = 1− q0 and G (∆k) = 1− q0 − (1− q0)
∑k

k′=1 qk′ for k > 0.�

Once q̃ (q0,q) is known, we can identify H (·). The argument in Section 3.2 applies directly,
because the inverse of β (·; q̃ (q0,q)) takes the same form as (10) and the price distribution is identified.
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6 Monte Carlo Study

The purpose of this section is to numerically investigate theoretical features of our model. We consider

a simple design with three firms. Consumers draw costs from a distribution with cdf G (c) =
√
c for

c ∈ [0, 1]. Firms draw costs from a uniform distribution on [0, 1]. We solved for the equilibrium of

the game by iterating the system of equations in (6). We tried different initial values and found only

one equilibrium that generates price dispersion with q = (0.7852, 0.0455, 0.1693). We generate data

from this equilibrium for 333 markets, so IM = 999, by drawing prices prices from (4) and market

shares from (7).

We focus on the nonparametric estimators of f (·) and h (·). We estimate F (·) and q using the
estimators described in Section 4. For f (·) and h (·), while the estimators mentioned in Section
4 are suffi cient in delivering the desired convergence rate uniformly over an expanding interval, in

practice we can use data outside of the interval that are closer to the boundaries if they can be well

estimated. Following the suggestion of Hickman and Hubbard (2015), who estimated a first-price

auction model, we employ a boundary corrected kernel and use all observations. Their choice for the

boundary correction is based on the estimator of Karunamuni and Zhang (2008, henceforth KZ), and

they show it works well in small samples (also see Li and Liu (2015) in another auction application).

We note that our estimation problem is more challenging than a pure auction setup because we have

to estimate f (·), which has a pole, and the estimation of h (·) has additional sampling errors from
estimating q and F (·).
We consider two estimators for f (·). f̂1 (·) is an estimator based on KZ that accounts for the

boundary effects but ignores the presence of the pole. f̂2 (·) uses the transformation described in
equation (17) to accommodate the pole and applies boundary correction at the lower boundary. We

use the Epanechnikov kernel for all of our estimators. Boundary correction uses the optimal endpoint

kernel and associated plug-in constants and bandwidths suggested in KZ. Figures 1 and 2 plot the

mean and the 5th and 95th percentiles for each
(
f̂1 (·) , f̂2 (·)

)
against the true price pdf. We see

that f̂1 (·) performs quite well near the lower support point but not near the pole. f̂2 (·) performs
much better near the pole. A careful inspection, however, shows the bias of f̂2 (·) is generally larger
than that of f̂1 (·) away from the pole.We next estimate h (·). The plots in Figures 3 and 4 contain
the mean and the 5th and 95th percentiles of KZ boundary corrected estimators,

(
ĥ1 (·) , ĥ2 (·)

)
,

that correspond respectively to
(
f̂1 (·) , f̂2 (·)

)
. These figures also include analogous plots from an

infeasible KZ boundary corrected estimator constructed from the estimated costs when the true f (·)
is used, while q and F (·) are still estimated, to highlight the effect of density estimation. The
infeasible estimator is generally the superior estimator as expected, although it is worth noting that

even the infeasible estimator still suffer from the boundary effect. For the feasible estimators, ĥ2 (·)
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has lower bias over its lower half of the support compared to the upper half due to substantial bias

from estimating f (·) near the pole. In contrast, ĥ2 (·) performs extremely well closer to the upper
support and its distribution is concentrated around the mean over the whole support, however its

bias increases as it approaches the lower boundary.

The simulation study illustrates the performance of ĥj (·) inherits characteristics of f̂j (·). There-
fore it is clear one should account for the boundary effect at the lower support as well as the pole at

the upper support. One way to proceed in practice is to perform some kind of model averaging. As-

ymptotically, such estimator will be consistent since
(
f̂1 (·) , f̂2 (·)

)
, and subsequently

(
ĥ1 (·) , ĥ2 (·)

)
,

are consistent estimators on the interior of the support.

7 Empirical Application

7.1 Data and setup

Our application is related to our earlier work estimating the value of information provided by in-

termediaries in the UK mortgage market9. Our aim here is to illustrate how adaptations of our

baseline model can be applied to a rich dataset through the lens of a search model. The particular

adaptations are: (i) incorporate observable product and consumer heterogeneity; (ii) introduce an

intermediary who provides information about prices in exchange for a fee (see section 5.2); (iii) show

how some parts of the estimation procedure can be conducted parametrically.

9See the technical report in Mýsliwski and Rostom (2022). To keep this section succinct and self-contained, we

further refer the reader to that paper for a detailed description of the market, dataset, descriptive evidence of price

dispersion, importance of intermediaries and counterfactuals.
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The data come from Product Sales Database containing loan-level administrative data for all

new mortgages in the UK. We focus on fixed rate mortgage products with two-, three-, and five-year

durations; and to loan sizes less than £ 1M from 2016 and 2017. The empirical exercise presented

here differs from Mýsliwski and Rostom (2022, MR hereafter) in several respects. To reduce di-

mensionality of the observed characteristics, we use a subset of the data covering only regular loan

types (i.e. those without flexible repayment schemes and cashback options). Secondly, we focus on

competition between four, instead of six biggest lenders. Our final dataset contains information on

over 700,000 individual transactions, which are then aggregated up to monthly prices and market

shares of each of the four banks conditional on loan and borrower characteristics. Finally, we use

parametric estimators for price and marginal cost distributions.

We follow Allen, Clark, and Houde (2019)) and construct price based on monthly mortgage cost

defined as P = iL + Fee
N
, where i is the interest rate in the initial, fixed-rate period, L is the size

of the loan, Fee is the up-front fee, and N is the initial period of the mortgage contract (24, 36, or

60 months). We detrend prices to remove dispersion from macroeconomic shocks (e.g. changes to

the Bank of England’s interest rate) and deflate them to January 2016 levels. We further normalize

this measure to correspond to the median-sized loan in the data (around £ 150k). Even with the

detrending and normalization, loans can still differ of observable characteristics which we label as zl.

Moreover, we allow for different borrower types (e.g. younger/older, more/less wealthy households)

to draw their search costs from different distributions. Those characteristics are denoted by zb. Table
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1 lists out zb and zl.

Variable Values

Borrower characteristics: zb
Age < 30, 30+

Income Below/above median

FTB status First-time-buyer (FTB), Non-FTB

Location Urban, Rural

Loan characteristics: zl
LTV ≤ 70, 71-75, 76-80, 81-85, 86-90, 91-95

Deal length 2-, 3-, 5-year

Term < 10, (10, 15], (15, 20], (20, 25], (25, 30], (30, 35]

Loan value 4 quartiles

Table 1. List of observable heterogeneities in the model.

7.2 Estimation

We see borrowers with different prices for the same borrower-loan type (zb, zl). To construct an esti-

mator based on our identification strategy in the previous sections, we aggregate consumers’prices

in each market. In what follows, let Y (zb,zl)
im and P (zb,zl)im denote market share and price of lender i in

month m for any (zb, zl). We use the individual median price to represent P
(zb,zl)
im . We believe such

aggregation rule is reasonable, following Benetton (2021), who argued the UK mortgage market is

characterized by posted rather than individualized prices since mortgage offers are based on observ-

ables with little room for negotiation. Variation in prices for each lender-market-product combination

is therefore due to discretization of loan characteristics. We have explored other representative mar-

ket prices as a robustness check. Our results are largely robust to different representations for P (zb,zl)im

(we used mean or several other quantiles).

We estimate our model parametrically, following these steps:

1. Estimate F (·|zb, zl). Take
{
P
(zb,zl)
im

}I,M
i=1,m=1

to be a random sample from a Beta distribution

conditional on (zb, zl). We parameterized the distribution so the two shape parameters are gov-

erned by θ (zb, zl) =
(
θ>11zb + θ>21zl, θ

>
12zb + θ>22zl

)
. We pooled prices across (zb, zl) and estimated(

θ>11, θ
>
12, θ

>
21, θ

>
22

)>
by maximum likelihood10.

10We used the betareg command on R. We first rescaled price onto [0, 1]. We recovered the original pdf and cdf
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2. Estimate q̃ (zb, zl): Use
{(
Y
(zb,zl)
im , P

(zb,zl)
im

)}I,M
i=1,m=1

to perform constrained least squares based

on minimizing
∥∥∥Y(zb,zl) − X̂(zb,zl)q

∥∥∥2 subject to q summing to 1 and q ≥ 0 to obtain ̂̃q (zb, zl).

Y(zb,zl) denotes the vector of market shares and
(
X̂
(zb,zl)
m

)
ik

= k
I

(
1− F̂ (Pim|zb, zl)

)k−1
with

F̂ (·|zb, zl) taken from Step 1.

3. Estimate G (∆k (zb, zl) |zb). Estimate G (∆0 (zb, zl) |zb) by 1− q̂0 (zb, zl) and G (∆k (zb, zl) |zb) by
1−q̂0 (zb, zl)−(1− q̂0 (zb, zl))

∑k
k′=1 q̂k′ (zb, zl) for k > 0. q̂0 (zb, zl) is the proportion of borrowers

using a broker and q̂k (zb, zl) =
(̂̃q(zb,zl))

k

1−q̂0(zb,zl) for 1 ≤ k < I and qI (zb, zl) =
(̂̃q(zb,zl))

I
−q̂0(zb,zl)

1−q̂0(zb,zl) wherễq (zb, zl) is from Step 2.

4. Estimate ∆k (zb, zl). Use F̂ (·|zb, zl) from Step 1 to simulate prices and estimate ∆k (zb, zl) by

EF̂ (·|zb,zl)
[
P(1:k)

]
− EF̂ (·|zb,zl)

[
P(1:k+1)

]
for k > 0 and ∆0 (zb, zl) by φ̂ (zb, zl) + EF̂ (·|zb,zl)

[
P(1:I)

]
−

EF̂ (·|zb,zl) [P ] where φ̂ (zb, zl) is the median broker fee.

5. Estimate h (·|zl). Construct R̂(zb,zl)im by P (zb,zl)im −
∑I
k=1(̂̃q(zb,zl))kk

(
1−F̂

(
P
(zb,zl)
im |zb,zl

))k−1
f̂

(
P
(zb,zl)
im |zb,zl

)∑I
k=1(̂̃q(zb,zl))kk(k−1)

(
1−F̂

(
P
(zb,zl)
im |zb,zl

))k−2
where

(
f̂ (·|zb, zl) , F̂ (·|zb, zl)

)
are from Step 1 and ̂̃q (zb, zl) is from Step 2. Take

{
R̂
(zb,zl)
im

}I,M
i=1,m=1

to be a random sample from Beta distribution conditional with parameters are governed by

π (zl) =
(
π>1 zl, π

>
2 zl
)
.

Other than the parametric estimation of price and lender’s cost distributions, we follow closely

the nonparametric identification strategy from Step 2 to the construction of R̂(zb,zl)im in Step 5. In

particular, we do not specify G (·|zb) to come from a particular parametric distribution. We choose

the Beta distribution because it allows for poles at the boundaries. Lastly, relating to our discussion

in Section 3.2, variation in zl allows us to identify G (·|zb) at more points than the case without
lender’s observed heterogeneity. Specifically, for a given zb, we have estimates of G (∆k (zb, zl) |zb) for
k = 1, 2, 3 for each loan characteristics combination zl. Following Sanches et al. (2018), for example,

we can pool estimates of {G (∆k (zb, zl) |zb)}3k=1 across all loan characteristics combinations by series
estimation.

by: (i) let P̃ (zb,zl)im =
P
(zb,zl)
im −P (zb,zl)

P
(zb,zl)−P (zb,zl)

where
(
P (zb,zl), P

(zb,zl)
)
are the min and max prices; (ii) perform betareg with{

P̃
(zb,zl)
im

}I,M
i=1,m=1

to estimate f̃ (·|zb, zl) and F̃ (·|zb, zl); (iii) estimate f (·|zb, zl) and F (·|zb, zl) using f (p|zb, zl) =

1

P
(zb,zl)−P (zb,zl)

f̃

(
p−P (zb,zl)

P
(zb,zl)−P (zb,zl)

|zb, zl
)
and F (p|zb, zl) = F̃

(
p−P (zb,zl)

P
(zb,zl)−P (zb,zl)

|zb, zl
)
respectively.
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7.3 Results

For brevity’s sake, we present a selection of estimation results illustrating the main advantages of

our approach. First, we summarize quartiles of search cost distributions.

# zb− comb 1st quartile 2nd quartile 3rd quartile % Median

Age Inc FTB Urb

1 L L Y R 100.53 (17.53) 125.53 (26.37) 150.53 (33.42) 31.17%

2 H L Y R 28.93 (0.61) 35.93 (0.60) 42.93 (0.76) 9.52%

3 L H Y R 33.11 (10.69) 51.86 (15.22) 70.62 (21.09) 14.11%

4 H H Y R 24.36 (0.23) 26.84 (0.38) 29.32 (0.58) 7.93%

5 L L N R 23.87 (0.56) 29.50 (1.69) 35.12 (2.96) 8.76%

6 H L N R 27.93 (24.07) 34.30 (34.72) 40.67 (43.27) 10.38%

7 L H N R 32.40 (23.03) 52.29 (38.35) 72.18 (47.98) 16.67%

8 H H N R 30.36 (0.42) 35.69 (0.68) 38.19 (0.83) 11.51%

9 L L Y U 20.98 (0.94) 41.48 (1.98) 45.22 (3.76) 10.29%

10 H L Y U 25.16 (17.49) 31.28 (21.29) 37.41 (25.71) 8.04%

11 L H Y U 25.46 (5.94) 31.71 (21.09) 37.96 (29.44) 8.64%

12 H H Y U 19.61 (0.86) 26.10 (5.05) 31.35 (7.76) 7.44%

13 L L N U 41.58 (14.65) 61.50 (24.19) 81.32 (30.87) 18.06%

14 H L N U 32.08 (0.68) 37.80 (0.83) 40.53 (1.00) 11.28%

15 L H N U 30.60 (0.43) 33.03 (0.45) 34.57 (0.51) 10.56%

16 H H N U 20.72 (0.45) 31.24 (0.28) 34.01 (0.39) 10.17%

Table 2. Summary of quantiles search cost distributions.

Table 2 presents quartiles of nonparametrically estimated search cost distributions for 16 different

borrower types (referred to as zb−comb(inations). Age: L (below 30)/H (over 30). Inc(ome): L

(below median)/H (above median). FTB (first time buyer status): Yes/No. Urb(an): U (urban

area)/R (rural area). Columns 6-8 contains the median search cost in \pounds/month in the initial
period. Column 9 expressed in relative terms (divided by median and average monthly payment,

respectively). Bootstrap standard errors in parentheses based on 500 replications.

The results reveals several interesting findings: first, there are substantial differences between

median search costs depending on different demographics, with young, low-income residents of rural

areas who are purchasing their first home incurring as much as 31% of loan’s monthly interest pay-

ment in search costs. Comparing relative magnitudes in the last column on the table also suggests,

that in urban areas, first-time buyers spend relatively less on search than those that remortgage

or buy a second property. This may suggest that search costs in this market might have a similar
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interpretation to an opportunity cost of time and that learning does not seem to play a major role

(i.e. subsequent experience in the mortgage market does not seem to reduce the costs of search efforts

significantly). While we notice some discrepancies between the results in Table 2 and a corresponding

table in MR, the relative magnitudes of search cost all fall in a similar range and the main qualitative

conclusions remain unchanged, despite differences in sample composition and our use of parametric

assumptions.

On the supply-side, we estimate distributions of marginal costs of providing loans of different

types and evaluate the extent of banks’market power by analysing distributions of price-cost margins.

While presenting a wide range of analyses is beyond the scope of this paper, we show selected results

to prove that estimates derived from our model are in line with what is known about the mortgage

market - e.g. that riskier loans (i.e. those with higher LTV ratio and longer crediting term) are

costlier to supply. Figure Figure 5 nicely illustrate the latter. In particular, we simply used basic

kernel density plots obtained by pooling
{
R̂
(zb,zl)
im

}I,M
i=1,m=1

to illustrate how they vary along a selected

dimension of zl. In this case, the graphs are a sanity check for what know about the mortgage

market: riskier loans (those with higher LTV and longer crediting term) are costlier to supply. Note

that those distributions are not the same as h(·|zl) and are not a primitive of the model, since they
implicitly integrate out the remaining dimensions of zl.

We end this illustration with a plot of the distribution of percentage markups implied by the

model estimates in Figure 6. Similarly to the results obtained using a fully nonparametric approach

and a larger sample of lenders and loans in MR, the distribution is right-skewed with mean just

above 10%. In our other work we explain how banks’market power is affected by the presence of

intermediaries and look at changes in markups in a counterfactual without brokers. Equipped with

the estimates of all model primitives, particularly the estimates of H(·|zl) and G(·|zb), the model can
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also be used to answer other policy-relevant questions, such as effects of bank mergers, introduction

of LTV caps etc.11

8 Some Discussions

Our paper focuses on the theoretical and methodological aspects of identifying and estimating a

search model using market shares and price data. The exposition of our theoretical models assumes

each firm sells an identical product at the same price to all consumers. This posted-price framework

is common in applications with retail data (e.g., online books (Hong and Shum (2006)), computer

memory chips (Moraga-Gonzalez andWildenbeest (2008)). Other potentially interesting applications

in practice would involve individual specific price. Our mortgage application shows how aggregating

prices enables the estimation procedure used for the posted-price framework to extend to the case

where prices from the same firm vary across individuals. Particularly, we rely on the relation such as

E [Yim|P agg
im ] =

I∑
k=1

qk
k

I
(1− F (P agg

im ))k−1 . (29)

In the UK mortgage context, we argued using the median price as the as the representative market

price is innocuous (Benetton (2021)). More generally, however, (29) can be thought of as a parametric

assumption or approximation since it is not necessarily implied by the model unlike the posted-

price case (cf. parts (ii) of Assumption D/DE1/DE2). Nevertheless, our parametric proposal is a

11The main counterfactual study in MR was to calculate the value of information provided by mortgage brokers,

i.e. the change in consumer welfare based on new simulated equilibrium prices when intermediaries are removed from

the market. This application is related to the counterfactual study in Salz, who analyzed value of the brokers in New

York City’s trade-waste market.
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constructive approach in an empirical study because: one, the assumption has a clear interpretation

in relating the market shares to a representative price; two, it is easy to use in a variety of context.

It can be applied to the pure search model, with/out product differentiation, as well as a model with

an intermediary; following the nonparametric or parametric estimation procedures explained in the

paper.

We argue some assumptions are necessary for the feasible estimation of a search model with

heterogeneous consumers and sellers from individualized price. Consider a special case, as studied

by Salz (2020), when H (·) can be treated as known since he could identify H (·) from the auction

data. Salz also showed nonparametric identification of the search cost distribution is possible. How-

ever, applying his simulated method of moments (SMM) estimator essentially requires a parametric

specification on the cost distribution as well as moment selection. His method takes a full-solution

approach that solves the model12 for every parameter value during the optimization routine. A non-

parametric version of his approach would involve flexible modelling of the cost distributions, e.g. via

a sieve with a growing number of base functions, as well as letting the number of moments go to

infinity asymptotically. We note that a different estimator that remains closer to the model than

matching moments can also be constructed. Let F o (·) denote the cdf of the observed price. As part
of his identification proof, Salz showed that for all p,

1− F o (p) =
I∑

k=1

qk
k

I

(
1−H

(
β−1 (p)

))k−1
,

see equation (13)13 in Appendix B.2.1 of his paper. He also showed β−1 (·) can be identified by solving
a differential equation. The above equation resembles (29) and it indeed can be used to estimate q

in closed form given H
(
β−1 (·)

)
. The caveat is one needs to solve the differential equation (given on

page 60 Salz (2020)). We expect this could be a formidable computational task in real applications,

especially when price and cost distributions are parametric and depend on covariates, because the

differential equation would have to be solved repeatedly during the optimization routine.

The point of the previous paragraph is to elucidate the challenge in estimating a search model

like ours nonparametrically when prices are individualized even if it is theoretically possible to do so

(noting this was made possible when H (·) is assumed to be known). This is perhaps not surprising
because observing different prices offered by the same firm is suggestive that products it sells may

not be homogeneous, which brings us into the realms of product differentiation. Specifically, as an

12The computational task can be more diffi cult when there are multiple equilibria. An advantage of our approach

is we avoid this issue for the same reason as the so-called “two-step estimators”, from the dynamic game literature,

do. We refer the reader to the Introduction of Srisuma (2013) for a discussion.
13Salz uses m instead of k. We note that the exponent term on the RHS of his expression should be m− 1 and not

m. This is just a minor typo with no consequence.
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econometric model, it places us somewhere between a very simple posted-price framework with no

supply side heterogeneity like Hong and Shum (2006) and, at the other extreme, a sophisticated

model of differentiated product search in Moraga-González, Sándor, and Wildenbeest (2023) that

requires a much richer data environment for identification than price and market shares alone (e.g.,

with individual search behaviour data). Therefore, the parametric approach we have shown, as well

as Salz’s, provide pragmatic ways to study search markets where products are not too heterogeneous

with relatively modest requirements on data (i.e., prices and shares). Our model still paves the way

to answer interesting counterfactual questions. E.g., Salz (2020) and Mýsliwski and Rostom (2022)

study the value of intermediaries in their respective applications. Other possible applications include

quantification of effects on market price caused by changes to search costs (in the same vein as Choi,

Dai, and Kim (2018), Moraga-González, Sándor, and Wildenbeest (2023)) or to production costs or

market structure where the role of heterogenous firms can be emphasized.

We end by discussing some possible extensions to our work. One modelling extension we can

consider is for firms to have different probabilities of being found by consumers. Our results readily

extend to this case if we assume an equilibrium exists where the optimal pricing strategies of firms

are strictly increasing and share the same support. We are unable to prove such equilibrium exists,

but we are optimistic that it does based on positive results from the literature on asymmetric first-

price auctions14. The challenge stems from the (quasi-)inverse of the optimal pricing strategies are

solutions to a system of nonlinear differential equations that is diffi cult to analyze.15

On the econometrics, our nonparametric identification strategy readily extends to include ob-

served heterogeneity. All the assumptions made in Sections 2-5 can be written to condition on

covariates (that can include the number of firms). As in the auction model of Guerre et al. (2000),

however, the nonparametric rate of convergence for the conditional distributions with continuous

variables will be slower than that of the unconditional ones. In this case we expect the quantile

regression approach of Gimenes and Guerre (2020), recently developed to mitigate the dimension-

ality issue in the auction literature, can be applicable to our search model. Finally, we do not deal

with inference in this paper. Inference on the demand side parameters is relatively straightforward,

e.g. see Sanches, Silva and Srisuma (2018). Establishing the asymptotic distribution and validity for

the bootstrap of ĥ (·) and h̃ (·) is more challenging. We conjecture this can be obtained by suitably
adapting the arguments in a recent article by Ma, Marmer and Schneyerov (2019), where they derive

14Some existence results do exist, e.g. see Lebrun(1999) and Maskin and Riley (2000). Furthermore, a common

support for the optimal bids in the first-price context is also known to hold (e.g. see Athey and Haile (2007).
15It is not trivial even to show existence of such equilibrium numerically. For instance, in a related problem,

numerical studies of the equilibrium in asymmetric auctions is a current topic of research - e.g. see the discussion in

Fibich and Gavish (2011).
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the asymptotic variance for the GPV’s estimator as well as showing inference using the bootstrap is

valid.

Appendix

This Appendix provides the proofs of lemmas and theorems. We omit the proofs of Lemmas 1, 2

and 10, Theorem 1, and the Propositions. These are either immediate consequences of what have

discussed or proven in the main text. We also omit the proofs of Lemma 6 and Theorem 2 because

they are very similar to the proofs of Lemma 9 and Theorem 3 respectively.

Proof of Lemma 3. From (9), we have E [Yim|Xim] = X>imq. Multiply both sides by Xim and take

expectation yields E [XimYim] = E
[
XimX

>
im

]
q. Since E

[
XimX

>
im

]
has full rank, the proof follows

from solving for q. �

Proof of Lemma 4. By inspecting (4) and (5), β (·) is strictly increasing and continuously dif-
ferentiable on [R,R) therefore β−1 (·) (= ξ (·)) exists. Using the change-of-variable formula, we have
f (p) =

h(β−1(p))
β′(β−1(p))

. From (5), we can write f (p) = ψ
(
β−1 (p)

)
, where ψ (·) is a real-value function

defined on [R,R) such that

ψ (r) =

(
I∑

k=1

qkk (1−H (r))k−1
)2

(
I∑

k=2

qkk (k − 1) (1−H (r))k−2
)(

I∑
k=1

qkk
∫ R
s=r

(1−H (s))k−1 ds

) . (30)

Part (a) follows from infp∈[P ,P ] f (p) = infr∈[R,R] ψ (r) ≥ q21(
I∑
k=2

qkk(k−1)
)(

R
I∑
k=1

qkk

) > 0. Part (b) follows

from limp→P f(p) = limr→R ψ (r) = ∞. To obtain the expression in part (c), we know that β (r) is

the maximizer of the following function,

Λ (p, r) = (p− r)
I∑

k=1

qk
k

I
(1−H (ξ (p)))k−1 ,

for any r. β (r) is also the zero to ∂
∂p

Λ (p, r), where

∂

∂p
Λ (p, r) =

I∑
k=1

qk
k

I
(1−H (ξ (p)))k−1

− (p− r) ξ′ (p)h (ξ (p))
I∑

k=2

qk
k (k − 1)

I
(1−H (ξ (p)))k−2 .
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Note that the cdf and pdf of Pim and Rim are related through F (p) = H (ξ (p)) and f (p) =

ξ′ (p)h (ξ (p)) respectively. Substitute these in and impose the first-order condition leads to,

I∑
k=1

qkk (1− F (p))k−1 = (p− ξ (p)) f (p)
I∑

k=2

qkk (k − 1) (1− F (p))k−2 .

Rearranging the relation above gives (10).�

Proof of Lemma 5. From (5), we see that β−1 (·) is τ + 1 times continuously differentiable on

[P , P ) as β′ (·) > 0 on [R,R). The result then follows from the fact that ψ (r), see (30), is a smooth

functional of H (·) for all r ∈ [R,R). �

Proof of Lemma 7. For any p ∈
[
P , P

]
there exists a unique r ∈

[
R,R

]
such that for some

r̃ ∈
(
R,R

)
, (

P − p
)
f(p) = β′ (r̃)

(
R− r

)
f(β (r)) =

(
R− r

)
h (r̃) f(β (r)).

The first equality comes from replacing
(
p, P

)
with

(
β (r) , β

(
R
))
and applying the Mean Value

Theorem. The second equality uses the change-of-variable relation between f (·) and h (·). The result
follows as we let r → R due to the regularity of h (·) at R (i.e., existence of limr→R

(
R− r

)
h (r))

and the continuity of β (·).�

Proof of Lemma 8. For part (a), given that f †
(
p†
)

= exp
(
−p†

)
f
(
P − exp

(
−p†

))
for all p† ∈

[− ln
(
P − P

)
,∞), it suffi ces to show limp→0 pf

(
P − p

)
= 0. This is in fact an implication of the

regularity of f (·) at P . The same idea of proof used in Proposition 2(i) of Srisuma (2023) applies.
Part (b), the fact that f † (·) has the same degree of smoothness as f (·) can be proven as in Proposition
5 of Srisuma (2023). The boundedness of the derivatives can be proven as in Proposition 2(ii) of

Srisuma (2023).�

Proof of Lemma 9. From (18) when R̃im <∞ we can write,

R̃im −Rim = I1 (Pim) + I2 (Pim) , where

I1 (Pim) = Ψ
(
q̂, f̃ (Pim) , F̂ (Pim)

)
−Ψ

(
q, f̃ (Pim) , F (Pim)

)
,

I2 (Pim) = Ψ
(
q, f̃ (Pim) , F (Pim)

)
−Ψ (q, f (Pim) , F (Pim)) ,

where Ψ (q, f (Pim) , F (Pim)) =
∑I
k=1 qkk(1−F (Pim))

k−1

f(Pim)
∑I
k=2 qkk(k−1)(1−F (Pim))

k−2 so that Ψ
(
q̂, f̃ (Pim) , F̂ (Pim)

)
and

Ψ
(
q, f̃ (Pim) , F (Pim)

)
are estimated counterparts of Ψ (q, f (Pim) , F (Pim)) where some or all com-

ponents of (q, f (Pim) , F (Pim)) are replaced by
(
q̂, f̃ (Pim) , F̂ (Pim)

)
accordingly. By Lemma 4(a),

we know infp∈[P+δM ,P−δM ] f̃ (p) > c0 for some c0 > 0 with probability approaching one as M → ∞.
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Given the convergence rates in Propositions 3 and 4, it is straightforward to verify that the partial

derivatives of Ψ
(
q, f̃ (Pim) , F (Pim)

)
with respect to its first and third arguments are also almost

surely uniformly bounded. Therefore by the mean value theorem it follows that

|I1 (Pim)| = Op

‖q̂− q‖+ sup
p∈[P+δM ,P−δM ]

∣∣∣F̂ (p)− F (p)
∣∣∣


So that |I1 (Pim)| = o(ηM) almost surely. For I2, we can write

I2 (Pim) = −
(
f̃ (Pim)− f (Pim)

f̃ (Pim) f (Pim)

) ∑I
k=1 qkk (1− F (Pim))k−1∑I

k=2 qkk (k − 1) (1− F (Pim))k−2
,

so that

|I2 (Pim)| = O

 sup
p∈[P+δM ,P−δM ]

∣∣∣f̃ (p)− f (p)
∣∣∣
 a.s .

The upper bounds for |I1 (Pim)| and |I2 (Pim)| are independent of Pim. The proof then follows from
applying the convergence rates of the quantities in |I1 (Pim)| and |I2 (Pim)| as stated in Proposition
4.�

Proof of Theorem 3. From (19),

h̃ (r)− h (r) = J1 (r) + J2 (r) + J3 (r) , where

J1 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

(
K

(
R̃im − r
bh,M

)
−K

(
Rim − r
bh,M

))
1
[
R̃im <∞

]
,

J2 (r) = − 1

MIbh,M

M∑
m=1

I∑
i=1

K

(
Rim − r
bh,M

)
1
[
R̃im =∞

]
,

J3 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
Rim − r
bh,M

)
− h (r) .

For J1:

J1 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K ′(Rim − r
bh,M

)(
R̃im −Rim

bh,M

)
+

1

2
K ′′
(
Rim − r
bh,M

)(
R̃im −Rim

bh,M

)21 [R̃im <∞
]
,

where Rim is some mid-point between R̃im and Rim. Then we have

|J1 (r)| ≤
supi,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣
bh,M

1

MIbh,M

M∑
m=1

I∑
i=1

∣∣∣∣K ′(Rim − r
bh,M

)∣∣∣∣
+

(
supi,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣)
b3M

2

1

2MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
sup
v∈R

K ′′ (v) .
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It can be shown using standard methods for kernel estimators that

sup
r∈[R+ςM ,R−ςM ]

∣∣∣∣∣ 1

MIbh,M

M∑
m=1

I∑
i=1

∣∣∣∣K ′(Rim − r
bh,M

)∣∣∣∣− h (r)

∫
|K ′ (v)| dv

∣∣∣∣∣ = o (1) ,

where supr∈[R,R] h (r)
∫
|K ′ (v)| dv is finite. Since

[
R̃im <∞

]
is an almost sure set asymptotically,

1
MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
converges to 1 almost surely and,

1

2MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
sup
v∈R

K ′′ (v) =
1

2
sup
v∈R

K ′′ (v) + o (1) .

It follows that

sup
r∈[R+ςM ,R−ςM ]

|J1 (r)| ≤ O

(
ηM
bh,M

+
η2M
b3M

)
.

When ηM = O (b2M) it follows that,

sup
r∈[R+ςM ,R−ςM ]

|J1 (r)| ≤ O

(
ηM
bh,M

)
a.s .

For J2, since
[
R̃im =∞

]
is a null set asymptotically and 1

[
R̃im =∞

]
= o (υM), by choosing

υM = o
(

ηM
bh,M

)
,

sup
r∈[R+ςM ,R−ςM ]

|J2 (r)| ≤ o (υM) a.s .

For J3, it is a standard result in kernel estimation that

sup
r∈[R+ςM ,R−ςM ]

|J3 (r)| = O
(
bτh,M + η∗M

)
a.s .

The bias component in J3 is of the same order as
η∗M
bh,M

= o
(

ηM
bh,M

)
and the stochastic part is also

o
(

ηM
bh,M

)
. �

Proof of Theorem 4. It suffi ces to provide the best responses of consumers and firms analogous

to those in Lemmas 1 and 2 respectively, and give the definition of a quasi-symmetric equilibrium.

These results are stated in Lemmas 12 and 13 below. In particular, Lemma 11 replaces {∆k}I−1k=1

in equation (3) by {Υk}I−1k=1 and Lemma 12 use the distribution of random utilities based on (22)

instead of prices.

Lemma 12. Suppose Assumption D’holds. Then the consumer’s best response is a map σD : L →
SI−1 such that for any L in L,

σD (L) =

{
1−G (Υk (L))

G (Υk−1 (L))−G (Υk (L))

for k = 1

for k > 1
. (31)
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Lemma 13. Suppose Assumption D’holds. Then the firm’s best response is a map σS : SI−1 → L
such that for any q in SI−1, σS (q) is the cdf of µ (x (R0i) ;q) where µ (x (·) ;q) is defined as in (22).

We can now define a quasi-symmetric equilibrium as follows.

Definition 2 . A pair (q, L) ∈ SI−1 × L is a quasi-symmetric equilibrium if q = σD (L) and

L = σS (q), where σS (·) and σS (·) are defined in Lemmas 10 and 11 respectively.

The proof of the theorem follows immediately from here. �
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