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Abstract

We propose a model of nonsequential consumer search where consumers and firms differ

in search and production costs respectively. We characterize the equilibrium of the game.

We first show the distribution of search cost can be identified by market shares and prices.

Subsequently, we identify the production cost distribution using a similar strategy to Guerre,

Perrigne and Vuong (2000) as the firms’ decision problems resemble bidders’ problems in a

particular procurement auction. We prove the firm’s cost density can be estimated at the same
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convergence rate as the optimal rate in Guerre et al. uniformly over any fixed subset on the

interior of the support. The uniform convergence rate over any expanding support is slower due

to a pole in the price pdf that is a feature of the equilibrium. Our simulation study confirms

the theoretical features of the model. Our identification and convergence rate results also apply

to two generalizations of the baseline search model that allow for: (i) vertically differentiated

products; (ii) an intermediary. We apply the latter model to study loan search using UK

mortgage data.

JEL Classification Numbers: C14, C57, D83

Keywords: Auctions, Kernel Smoothing, Nonparametric Identification, Search Costs

1 Introduction

Consumer search cost is one of the classic explanations for why homogeneous goods or services

have different prices. Price dispersion can arise in equilibrium for a search model with minimal

heterogeneity. An influential paper by Burdett and Judd (1983) showed that a continuous pricing

rule can be generated by a mixed strategy Nash equilibrium in a fixed sample1 search model with

complete information consisting of infinitely many identical firms and consumers. There, firms are

identical because they have the same marginal cost of production and consumers draw search costs

from the same distribution. We refer the reader to a survey by Baye, Morgan, and Scholten (2006)

for different rationalizations of price dispersions in search and other models.

Hong and Shum (2006) developed an empirical model of consumer search based on Burdett

and Judd (1983). They showed, using just price data, the firms’marginal costs and parts of the

distribution of consumer search costs can be identified nonparametrically. Having infinitely many

firms is not essential for identification; Moraga-González and Wildenbeest (2008) employed the same

strategy to identify an analogous model with a finite number of firms. Identification of the search cost

distribution in these papers is, however, only partial. Moraga-González, Sándor and Wildenbeest

(2013) showed the degree of partial identification can be reduced, or eliminated asymptotically, if

additional price data from other equilibria are available.

1In a fixed sample (or nonsequential) search consumers decide from the onset how many price quotes to search for.

This stands in contrast to sequential search. The two models are not nested. Morgan and Manning (1985) show the

fixed and sequential search models can be optimal in different circumstances. The fixed search model may be more

suitable, for example, in applications where time is a factor so that buyers prefer to gather information quickly. Some

recent empirical studies found that nonsequential search models provide a better approximation to consumers’search

behavior observed in real life (De Los Santos et al. (2012), Honka and Chintagunta (2017)).
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In this paper we propose an empirical model of a fixed sample search that allows for heterogeneity

across firms as well as consumers. We assume there are a finite number of firms who draw marginal

costs from some continuous distribution. Costs are private, and firms compete in an incomplete

information environment. We analyze both the theoretical and empirical aspects of this model. We

make the following contributions:

(i) Provide a system of equations that characterize non-degenerate pure strategy Bayesian-Nash

equilibria (BNE) in the model via a fixed-point. This is useful for solving the model, for the purpose

of conducting counterfactual studies.

(ii) Show both the marginal cost distribution of firms and search cost distribution of consumers

can be nonparametrically identified from data on price and market share. Our identification strategy

leads to closed-form expressions in terms of the observables that suggest easy to compute estimators.

(iii) Construct a nonparametric estimator for the density of the firm’s marginal cost that achieves

optimal convergence rate uniformly on any fixed subset in the interior of the support. A slight

modification of this estimator can achieve any convergence rate that is slower than the optimal rate

uniformly over a suitably expanding subset that increases towards the whole support asymptotically.

The difference in uniform rates on fixed and expanding support is due to an interesting feature of

the equilibrium price density that can be unbounded at the upper support. Our contribution here is

a technical one, as we show how a two-step density estimator can obtain a near optimal convergence

rate when it relies on a preliminary density estimator that estimates an unbounded density.

We provide three motivations for considering a model with incomplete information by way of

incorporating heterogeneity through firms’marginal costs. First, unlike the competitive market

framework in Burdett and Judd (1983), many consumer search applications in the literature involve

only a small number of oligopolistic firms. It is desirable to allow for firms to have different produc-

tion technologies that are private information in such setting. Second, heterogeneity amongst firms

provides an agnostic way to account for a degree of product differentiation of goods and services that

is unobservable (or deemed inconsequential at the time of purchase) to consumers but affects how

firms set the price.2 This is a useful concept that expand the scope of applications for search mod-

els. Third, relative to an incomplete information model, a complete information model has limited

capacity in studying counterfactuals that involve changes to firms’production costs beyond a loca-

tion shift. For example, consider a counterfactual scenario that is represented by a mean-preserving

transformation to the firms’cost distribution, which could be motivated by increased uncertainties

in supply chains or the adoptions of new technologies or regulations. No complete information model

can be used to study the effect of such a counterfactual because the cost distribution is degenerate.

2For example, online sellers of second-hand books or music records have private information about the actual

condition of the item that goes beyond the description provided in the offer because they physically own the product.
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While we generalize the model in Moraga-González and Wildenbeest (2008), by allowing hetero-

geneous firms, due to the difference in assumptions on information structures, our model is closer

to an earlier work by MacMinn (1980). MacMinn assumed firms differ by drawing private costs

from a uniform distribution. He derived a partial equilibrium result in terms of the optimal pricing

rule for firms when all consumers are pre-assigned to search a fixed number of times (cf. Pereira

(2005)). Therefore, our analysis is a generalization MacMinn’s setup because we do not impose any

parametric assumption on the marginal cost distribution and we endogenize consumer search.

Hong and Shum (2006) relied on the constant profit condition that the mixed pricing strategy

satisfies for identification in a complete information model. This approach is not applicable in an

incomplete information framework. The decision problem for each firm in our model resembles that

of a first-price procurement auction where each bidder has to form an expectation on the number

and identity of her competitors.3 Moreover, Salz (2020, Appendix B.1) provided numerical evidence

suggesting a search model like ours cannot be identified with price data alone. To make progress, we

exploit the restriction imposed by market shares and price to identify consumers’search distribution.

This idea is analogous to linking market shares to choice probabilities, which is the starting point

for the identification argument used in the literature on demand for differentiated products (e.g.,

see Berry and Haile (2014)). We show that market shares relate to the equilibrium proportions of

consumer search linearly in expectation conditional on price. These proportions can be recovered

by solving a linear equation. Then, following the insight of Hong and Shum (2006), the proportions

can be used to identify (a finite points of) the search cost distribution; they are also an important

ingredient for identifying firm’s marginal cost distribution. Our approach on the latter is similar

to how Guerre, Perrigne and Vuong (2000, hereafter GPV) identify the distribution of the bidder’s

latent valuation in a first-price auction model. In particular, we do this by deriving the inverse

of the equilibrium pricing function and using it to recover firms’latent costs from observed prices.

Throughout, our identification strategy is constructive. We show the model parameters can be

written explicitly in terms of the joint distribution of observed variables. They can then be estimated

nonparametrically, in closed-form, without any numerical optimization.

The non-degenerate equilibrium price distribution has an interesting feature. Our analysis reveals

its probability density function (pdf) generally has a pole at the upper support. I.e., the pdf asymp-

3The similarities between search and auction models have been well documented in the theoretical literature, e.g.,

see McAfee and McMillan (1998) in a mechanism design context. Notable applications of this relation can be found

the labor literature. For examples, Postel-Vinay and Robin (2002) and Cahuc, Postel-Vinay and Robin (2006) model

on-the-job search as a sequential auction over the worker between the current and prospective employer. A job search

model that is closer to ours is the work by Bontemps, Robin and van den Berg (1999) as they allow for heterogeneous

opportunity costs of keeping jobs among workers and continuous productivity among firms.
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totes to infinity at that point. Intuitively, this happens because there are consumers who search once

and will pay whatever price the firm charges up to their valuation of the good. Correspondingly,

firms have an incentive to charge close to that price. Poles have also appeared in other structural

models such as the equilibrium distributions of bids in a first price auction with binding reserved

price (see Section 4 in GPV) and wages in a job search model (Bontemps, Robin and van den Berg

(2000)). These authors show their respective estimators of bidder’s valuation and firm’s productivity

densities attain the optimal uniform convergence rates derived in GPV on any fixed interval in the

interior of the support. Our density estimator of the firm’s costs can achieve the same rates. The

pole, however, prevents the optimal convergence rates of these estimators to hold over intervals that

expand towards it. In this case, we apply the estimation strategy proposed in Srisuma (2023) to

construct an estimator that can achieve any uniform convergence rate that is slower than the opti-

mal benchmark (without a pole), where uniformity is taken over a suitably expanding support that

increases to the full support asymptotically.

We provide two extensions of our baseline model where our closed-form identification and conver-

gence rates results mentioned above also apply. One is when there is vertical product differentiation

known to consumers and firms, but it is not known to the econometrician. This model can be seen as

an incomplete information counterpart to the search model in Wildenbeest (2011) that uses quality

to explain systematic price differences between firms. The other is a model with an intermediary

(i.e., a broker), where consumers with very high search costs purchase through an intermediary who

conducts an exhaustive search for a fee. Our second extension is inspired by the empirical model

used in Salz (2020).

There are noteworthy similarities and differences between our model with an intermediary with

Salz’s. Specifically, without an intermediary, his search model is the same as ours. Indeed, the nu-

merical study by Salz that we mentioned earlier, which suggested one cannot identify our model with

price data alone, was performed in a pure search setting. With an intermediary, Salz showed search

cost distribution can be identified if the firms’cost distribution is known a priori. Such assumption

is plausible in his application where the search and broker markets are separated. Specifically, his

broker market is cleared through procurement auctions that he had data for, so he could identify

the cost distribution directly using GPV’s strategy. In contrast, we combine the search and broker

market in a single framework because there are no separate physical markets in our application.

In spite of these connections between the models, Salz’s identification approach and ours funda-

mentally differ. The difference is due to the assumptions on data availability. With the firms’cost

distribution known from the broker market, Salz uses consumers’paid prices in the search and broker

markets that are individualized (i.e., the same seller can offer different consumers different prices)

to match with theoretical moments to estimate model primitives. Our approach, which works with
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or without intermediaries, uses market-level data on prices and shares as described previously. The

notion of using market price in practice is innocuous in applications with posted price where firms

charge all consumers the same price. Our approach is also amenable for applications with individu-

alized prices. This, however, requires an additional parametric, though interpretable, assumption on

the market price that is constructed from individual-level prices.

For the ease of notation and clarity of idea, the paper presents the identification arguments

and theoretical results in the setting where there are no observable characteristics and each firm

charges consumers the same price. The identification results immediately extend conditional on

observables. It is worth highlighting that variables which affect firms’costs but not search costs

provide exclusion restrictions that reduce the degree of partial identification by a similar argument

of Moraga-González, Sándor and Wildenbeest (2013) as mentioned earlier. We will illustrate these

points in our application, along with how to incorporate parametric assumptions that is coherent with

our nonparametric identification strategy. Particularly, beyond employing a parametric assumption

to handle individualized prices, imposing some parametric structures is a practical way to deal with

the curse of dimensionality when there are many conditioning variables.

Our numerical studies consist of a Monte Carlo simulation and an empirical application. The

simulation study confirms the pole exists and shows nonparametric estimators that ignore the pole

can perform poorly in its vicinity. Our application uses mortgage data from the UK to estimate a

model with mortgage brokers playing the role of intermediaries.

We organize the rest of the paper as follows. Section 2 presents the model and characterizes the

equilibrium of the game. We give identification results in Sections 3 and show how they lead to

estimators with desirable properties in Section 4. Section 5 studies two extensions of our baseline

model. Section 6 and 7 contain a Monte Carlo exercise and empirical application respectively. Section

8 concludes with some discussions. The proofs of all results not given in the main text can be found

in the Appendix.

2 Model

Consider a model in which there is a unit mass of consumers and a finite number of firms. Each

consumer has an inelastic demand for a single unit of a good supplied by the firms. Consumers differ

by search costs. They have a belief on the price distribution and employ a nonsequential search

strategy to decide on the number of firms to visit and purchase at the lowest price. Firms differ by

production costs. They form beliefs about consumer search behavior and competing firms’pricing

strategies, and set their price to maximize expected profits.

The primitives of our search model are G (·) and H (·) that respectively represent the search cost
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cdf and production cost cdf. The number of firms, denoted by I, is finite and known. We model

consumers in the same way as Moraga-González and Wildenbeest (2008), Moraga-González, Sándor

and Wildenbeest (2013), and Sanches, Silva and Srisuma (2018). These only differ from Hong and

Shum (2006) in that the latter assumed I is infinite. We describe the decision problem and the best

response for the consumers in Section 2.1. The aforementioned papers assume firms have identical

production costs and that is common knowledge. We assume costs differ across firms and they are

private information. We describe the firms’decision problem and derive their best response in Section

2.2. We define the equilibrium of our game in Section 2.3.

2.1 Consumers

All consumers have the same valuation of the object at some finite and positive P . Each consumer

draws a search cost c, which is assumed to be a continuous random variable support on
[
C,C

]
⊂ R+

with cdf G (·). A consumer with search cost c faces the following decision problem when a purchase

is always made:

min
1≤k≤I

ck + EF
[
P(1:k)

]
.

We use P(k:k′) to denote the k−th order statistic from k′ i.i.d. random variables of prices with some

arbitrary distribution; P(1:k) denotes the minimum of such k prices. The game is symmetric as all

firms have equal probability of being found. We use EF [·] to denote an expectation where the random
prices have distribution described by the cdf F (·).

Consumer’s Best Response

The marginal saving from searching one more firm after having searched k firms is:

∆k (F ) ≡ EF
[
P(1:k)

]
− EF

[
P(1:k+1)

]
. (1)

∆k (F ) is non-increasing in k because EF
[
P(1:k)

]
is non-increasing in k. When price has a differen-

tiable cdf, EF
[
P(1:k)

]
is strictly decreasing in k and

∆k (F ) =

∫
F (p) (1− F (p))k dp. (2)

It is optimal for a consumer to search once if she draws c > ∆1 (F ) and to search k > 1 times if

c ∈ [∆k (F ) ,∆k−1 (F )). For the purpose of defining equilibrium (see below), we can state the best

response for consumers in terms of proportions of consumer search. In what follows, we use F to

denote a set of all price cdfs and SI−1 to denote a unit simplex in RI+.
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Lemma 1. A consumer’s best response is a map σD : F → SI−1 such that for any F in F ,

σD (F ) =


1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

G (∆I−1 (F ))

for k = 1

for 1 < k < I

for k = I

. (3)

where {∆k}I−1k=1 is defined in (1).

Note that equation (3) holds irrespective whether the first price is free or not. The key feature

of the best response in Lemma 1 is we can sort consumers so that those drawing higher costs cannot

search more than those with lower costs. Such structure is also accommodated by non-linear cost

functions that allow some economy or dis-economy of scale if one has a prior knowledge to impose

them.4

2.2 Firms

Firm i draws a marginal cost of production Ri. Ri is assumed to be a continuous random variable

supported on
[
R,R

]
⊂ R+ with cdf H (·) where R is finite. Firm costs are private information that

are independent from each other. Under symmetry, firm i then faces the following decision problem:

max
p

Λ (p,Ri;q) , where

Λ (p,Ri;q) = (p−Ri)
I∑

k=1

qk
k

I
P
[
P(1:k−1) > p

]
.

Here q = (q1, . . . , qI)
> denotes a vector in SI−1, where qk denotes the proportion of consumers

searching k firms. The term k
I
is the probability that firm i gets included when k firms are sampled.

Note that when qI = 1, the firm’s decision problem is the same as the bidder’s problem in a standard

first-price procurement auction.

4For example, suppose ∆χ (c, k) = χ1 (c)χ2 (k) where χ1 is strictly increasing and χ2 is positive. This includes the

linear cost as a special case when χ1 (c) = c and χ2 (k) = 1. If {∆k/χ2 (k)}I−1k=1 is strictly decreasing, then equation

(3) in Lemma 1 can be generalized to:

σD (F ) =

{
1−G

(
χ−11 (∆k (F ) /χ2 (k))

)
G
(
χ−11 (∆k−1 (F ) /χ2 (k − 1))

)
−G

(
χ−11 (∆k (F ) /χ2 (k))

) for k = 1

for k > 1
,

and the proof strategy for Proposition 1 remains applicable. To see how ∆χ accommodates both economy and dis-

economy of scale on search: (i) suppose χ2 is increasing (dis-economy of scale case) then {∆k/χ2 (k)}I−1k=1 is strictly

decreasing for any ∆k that comes from a non-degenerate price distribution; (ii) if χ2 is decreasing (economy of scale

case) then {∆k/χ2 (k)}I−1k=1 can be strictly decreasing for some price distribution that needs to be determined on a

case-by-case basis.
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Firm’s Best Response

We consider a pricing strategy β :
[
R,R

]
→
[
P , P

]
⊂ R that is strictly increasing almost everywhere

and satisfies β
(
R
)

= R. The latter is the zero profit condition. We assume R = P , so that firms

always produce and a purchase is always made. For any q ∈ SI−1, we can define Λ∗ (·;q) to be the

value function for a representative firm when all players are assumed to employ a strictly increasing

optimal pricing strategy that we denote by β (·;q). We denote its inverse, β−1 (·;q) by ξ (·;q).

Λ∗ (r;q) = (β (r;q)− r)
I∑

k=1

qk
k

I
(1−H (ξ (β (r;q) ;q)))k−1 .

Then, by the envelope theorem (Milgrom and Segal (2002)),

d

dr
Λ∗ (r;q)

∣∣∣∣
r=R

= −
I∑

k=1

qk
k

I
(1−H (R))k−1 , and

Λ∗
(
R;q

)
− Λ∗ (R;q) = −

I∑
k=1

qk
k

I

∫ R

s=R

(1−H (s))k−1 ds.

Solving this gives the solution of the firm’s maximization problem, where for all r:

β (r;q) = r +

∑I
k=1 qkk

∫ R
s=r

(1−H (s))k−1 ds∑I
k=1 qkk (1−H (r))k−1

. (4)

It can be verified that β (·;q) is continuous and non-decreasing on
[
R,R

]
as well as satisfying

β
(
R
)

= R. Furthermore, suppose H (·) is differentiable with a positive pdf, h (·). Differentiating
the expression above gives,

β′ (r;q) =
h (r)

(∑I
k=2 qkk (k − 1) (1−H (r))k−2

)(∑I
k=1 qkk

∫ R
s=r

(1−H (s))k−1 ds
)

(∑I
k=1 qkk (1−H (r))k−1

)2 . (5)

This shows β (·;q) is strictly increasing on
[
R,R

]
whenever q1 < 1, and when q1 = 1, β (r;q) = R

for all r .

We define the firm’s best response to the consumers in terms of the distribution of β (Ri;q).

Lemma 2. The firm’s best response is a map σS : SI−1 → F such that for any q in SI−1, σS (q) is

the cdf of β (Ri;q) where β (·;q) is defined as in (4).

2.3 Equilibrium

We define a symmetric equilibrium for our game by any pair of consumer search proportions and

induced cdf for firm’s pricing strategy that simultaneously satisfy the best responses on both the

demand and supply side.
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Definition 1. A pair (q, F ) ∈ SI−1×F is a symmetric equilibrium if q = σD (F ) and F = σS (q),

where σS (·) and σD (·) are defined in Lemmas 1 and 2 respectively.

An equilibrium with degenerate price distribution always exists in our model. This occurs when

all consumers search once and all firms set the monopoly price, i.e. βM (r;qM) = R for all r. I.e.,

qM is such that q1M = 1 and qkM = 0 for k 6= 1 (cf. Diamond (1971)). Such equilibrium is not

suitable in many applications where prices differ. We focus on the case when β (·;q) is strictly

increasing. Theorem 1 characterizes such equilibria by q that satisfies (3) and (4) simultaneously.

Theorem 1. In a symmetric equilibrium (q, F ) ∈ SI−1 × F , where the equilibrium pricing strategy

is strictly increasing, q satisfies the following system of equations:

qk =

 1−G
(∫
F (p) (1− F (p)) dp

)
for k = 1

G
(∫

F (p) (1− F (p))k−1 dp
)
−G

(∫
F (p) (1− F (p))k dp

)
for 1 < k < I

, (6)

where F (p) = H (ξ (p;q)) for all p ∈
[
P , P

]
.

The characterization above shows that an equilibrium can be summarized by a fixed-point, which

is useful for solving the model. In general there may be multiple equilibria. We are not aware of a

uniqueness result in this context.

In subsequent sections we consider the econometric problem of identifying and estimating the

model primitives from data generated from a particular equilibrium. We will henceforth drop the

indexing arguments of equilibrium objects that are made explicit in this section for the purpose of

defining best response and equilibrium. E.g. β (·;q) becomes β (·), EF [·] becomes E [·] etc.

3 Nonparametric Identification

We assume to observe {(Yim, Pim)}I,Mi=1,m=1 where Yim is observed market share and Pim is price of

firm i in market m such that the data is generated from a single equilibrium. We distinguish Yim
from the theoretical market share. We formally define both below. Here M is the total number of

markets and we will use a large M asymptotics framework.

Assumption D. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that:

(i) there exists (q, F ) ∈ SI−1 × F with q1 ∈ (0, 1) so that Pim = β (Rim) ≡ β (Rim;q) where

β (·;q) has been defined in (4) and {Rim}I,Mi=1,m=1 is i.i.d. with a continuous density that is positive
and finite almost everywhere on

[
R,R

]
;
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(ii) {(Y1m, . . . , YIm)}Mm=1 is i.i.d. such that the joint distribution of (Yim, Pim) satisfies,

E [Yim|Pim] =

I∑
k=1

qk
k

I
(1− F (Pim))k−1 . (7)

Assumption D(i) assumes observed prices are a random sample from an equilibrium of a search

model. q1 < 1 ensures β (·;q) is strictly increasing and price has a continuous distribution. Having

q1 = 0 does not affect our identification strategy and it simplifies our asymptotic analysis. However,

we expect q1 > 0 to be the norm in many applications and it has an econometric implication (due to

the pole in the price density (see Lemma 4(b))). We assume the more diffi cult case is on hand rather

than having to treat two separate cases. Equation (7) in Assumption D(ii) states a defining property

of market shares as the RHS of the equation has the interpretation of the ex-ante probability of firm

i winning a sale by setting price to be Pim. Assumption D(ii) also assumes shares across markets are

i.i.d., but it allows shares to be correlated within a market.

Observed and theoretical market shares generally differ. The former is an aggregation of decisions

from a finite number of consumers and the latter aggregates decisions from a continuum of consumers.

To define these shares formally, omitting the market index, we denote the search cost for consumer b

by cb and let Ck := [∆k,∆k−1] for k > 0 where {∆k}I−1k=0 denote the search costs where consumers are

indifferent in making k and k+1 searches. Let Dbi, `bi, and `biA be binary variables that takes value 1

if consumer b respectively purchases from firm i, searches only at firm i, and searches at firm i along

with k− 1 other firms in the set A ∈ I ik :=
{
A =

⋃
j∈I\{i} {j}

∣∣∣ |A| = k − 1
}
⊆ I := {1, . . . , I}. The

micro-foundation for market share of firm i is based on an individual’s purchasing decision,

Dbi = `bi1 [cb > ∆1] +
I∑

k=2

∑
A∈Iik

`biA1

[
cb ∈ Ck, Pi < min

j∈A
{Pj}

]
. (8)

When each firm has an equal chance of being found, it is easy to verify that E [Dbi|Pi] leads to the
expression on the RHS of (7). When Yim is defined as an average of Dbi over B i.i.d. consumers, (7)

follows. Moreover, as B →∞, by the law of large numbers, Yim converges to the theoretical market
share:

Y im :=
q1
CI1

+
I∑

k=2

qk

∑
A∈Iik

1 [Pim < minj∈A {Pjm}]
CIk

,

where CIk := I!
(I−k)!k! . Note that E

[
Y im|Pim

]
= E [Yim|Pim], because

∑
A∈Iik E [Pim < minj∈A {Pjm} |Pim] =

CI−1k−1 (1− F (Pim))k−1 and CI−1k−1/CIk = k
I
. The discrepancy between Yim and Y im thus represents an

approximation error of the model. The error, εim := Yim − Y im, exhibits a property of a classical

measurement error since E [εim|Pim] = 0. Note that
(
Y im, Y jm

)
are correlated as they are jointly

determined by prices and we expect (Yim, Yjm) to be correlated as a consequence.
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In Section 3.1 we consider identification on the demand side. We first identify q using (7), based

on {(Yim, Pim)}I,Mi=1,m=1, which can then be used to identify G (·). We identify H (·) in Section 3.2.
For the latter, it suffi ces to show how to recover firm costs, {Rim}I,Mi=1,m=1. In both Sections 3.1 and
3.2 we take F (·) and the joint distribution of (Yim, Pim) for any (i,m) to be known. Both of these

objects are nonparametrically identified under Assumption D when M →∞.

3.1 Consumers

Let Xim be a vector in RI such that (Xim)k = k
I

(1− F (Pim))k−1. We can write (7) as

Yim = X>imq+ εim, (9)

where εim satisfies E [εim|Pim] = 0. We can then identify q as the solution of a least squares problem.

Lemma 3. Suppose Assumption D holds. If E
[
XimX

>
im

]
has full rank then q is identified.

We now treat both q and F (·) as known and use them to identify G (·) at {∆k}I−1k=1

Proposition 1. Suppose Assumption D holds. Then G (∆k) is identified for k = 1, . . . , I − 1.

Proof. From (4), we see that G (∆k) = 1−
∑k

k′=1 qk′ for k = 1, . . . , I − 1. The proof follows since

both {∆k}I−1k=1 and q are identified. In particular, note that ∆k is a functional of F (·) for all k (see
(1) and (2)) and q is identified from Lemma 3. �

Our identification strategy for q is different to the method Hong and Shum (2006) used to identify

a complete information model. Once q is identified, however, we identify eachG (∆k) in the same way

as them. This approach only partially identifies G (·), as we can identify it at {∆k}I−1k=1. The degree

of non-identification can be reduced if there is exogenous variation across markets. For example,

suppose there are L market types where consumers draw search costs from the same distribution but

firms production costs have different distribution across types and/or the number of firms may vary

with L. Moraga-González, Sándor and Wildenbeest (2013) propose this identification strategy in the

complete information context. The same idea applies to our setting. We illustrate in Section 7 how

to find and exploit such variation empirically.

3.2 Firms

We can identify H (·) by inverting latent production costs from observed prices. Lemma 4 provides

key properties of the price density and gives an explicit formula for the inverse of the pricing strategy

in terms of q and the price distribution.

Lemma 4. Suppose Assumption D(i) holds. Then:

11



(a) infp∈[P ,P ] f(p) > 0;

(b) limp→P f(p) =∞;
(c) the inverse of the equilibrium pricing strategy, ξ :

[
P , P

]
→
[
R,R

]
, takes the following form

ξ (p) = p−
∑I

k=1 qkk (1− F (p))k−1

f (p)
∑I

k=2 qkk (k − 1) (1− F (p))k−2
, (10)

and ξ
(
P
)

= R.

When q1 = 0, it can be shown that f (·) is bounded away from zero on [P , P ) and f
(
P
)
does not

need to be infinite for ξ
(
P
)

= R.

Proposition 2. Suppose Assumption D holds. Then H (·) is identified.
Proof. Under Assumption D, ξ (·) is identified. Therefore we can recover Rim from ξ (Pim) for all

i,m. �

4 Estimation and Convergence Rates

We now look to estimate h (·) at the best possible convergence rate. We focus on this problem
because h (·) is the most diffi cult object to estimate in our model in the sense that its estimator has
the slowest convergence rate amongst estimators of other identifiable objects. Along the way, we will

discuss estimators of other parameters in the model. Particularly, parameters on the demand side

can be estimated at the parametric rate and our discussion on them will be brief.

We consider two separate cases. First, we consider the uniform convergence for h (·) over any fixed
closed interval that lies in the interior of

[
R,R

]
. In this case we can provide an estimator for h (·)

that achieves the same optimal convergence rate as the GPV estimator. Second, we consider uniform

convergence over an expanding interval that approaches
[
R,R

]
as the sample size increases. In this

case we will provide another estimator for h (·) that can converge at any slower rate than the one
achievable over a fixed support. The reason for a slower convergence rate is the latter accounts for

the pole (limp→P f (p) =∞). Our estimator for h (·) in both cases will be based on kernel smoothing
using estimated {Rim}I,Mi=1,m=1, which is to be obtained through the estimated inverse of the pricing
function (see (10)). In particular, the inverse of the pricing function depends on (q, F (·) , f (·)) that
have to be estimated.

To study convergence rates, we have to specify the degree of smoothness of H (·).

Assumption R. H (·) admits upto τ + 1 continuous derivatives on
[
R,R

]
for some τ ≥ 1.
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Lemma 5. Suppose Assumptions D and R hold. Then f (·) admits upto τ + 1 continuous derivatives

on
[
P , P

)
for the same τ as in Assumption R.

Lemma 5 says that f (·) has the same degree of smoothness as H (·) everywhere other than at P .
We next define estimators for (q, f (·) , F (·)) and discuss their convergence rates under Assumptions
D and R.

An estimator for F (·)

A natural estimator for F (·) is the empirical cdf, defined as

F̂ (p) =
1

MI

M∑
m=1

I∑
i=1

1 [Pim ≤ p] for all p. (11)

It is well-known from Donsker’s theorem that
√
M
(
F̂ (·)− F (·)

)
converges weakly to a Gaussian

process on
[
P , P

]
. Then by the continuous mapping theorem, supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = Op

(
1/
√
M
)
.

An estimator for q

We suggest to estimate q by least squares. Let Ym = (Y1m, . . . , YIm)>, em = (ε1m, . . . , εIm)> and

Xm be an I × I matrix such that (Xm)ik = k
I

(1− F (Pim))k−1. Vectorize Ym, Xm and em across

m to form Y =
[
Y>1 : · · · : Y>M

]>
, X =

[
X>1 : · · · : X>M

]>
and e =

[
e>1 : · · · : e>M

]>
respectively.

Then a vector version of (9) is,

Y = Xq+ e.

F (·) is unknown and has to be estimated. Let X̂ be the feasible counterpart of X where F (·) is
replaced by F̂ (·). Then,

q̂ =
(
X̂>X̂

)−1
X̂>Y, (12)

= q+ aM + bM , where

aM =
(
X>X

)−1
X>e,

bM =

((
X̂>X̂

)−1
X̂> −

(
X>X

)−1
X>
)
Y.

Using asymptotic theory for clustered samples (e.g. see Hansen and Lee (2019)), ‖aM‖ = Op

(
1/
√
M
)

as 1
M
X>X = 1

M

∑M
m=1

(∑I
i=1XimX

>
im

)
and 1√

M
X>e = 1√

M

∑M
m=1

(∑I
i=1Ximεim

)
would satisfy

a law of large numbers and central limit theorem respectively. Since
(
X̂>X̂

)−1
X̂> is a smooth

functional of F̂ (·), it can also be verified by applications of the continuous mapping theorem that

‖bM‖ = Op

(
1/
√
M
)
. Thus, ‖q̂− q‖ = Op

(
1/
√
M
)
.
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Furthermore, since ∆k is a functional of F (·), we can estimate G (∆k) using q̂ and F̂ (·) based on
the constructive identification result in Proposition 1. Such estimator will be a smooth functional of

F̂ (·) and have a
√
M−convergence rate. Estimating G (·) as a curve is also possible when there are

data from different equilibria that can identify more points on the support of the search cost. In this

case, Sanches, Silva and Srisuma (2018) proposed a series estimator that pooled data across equilibria

based on using estimated∆k and G (∆k) as generated regressor and regressand respectively; they also

derive the convergence rate of such estimator. The same type of estimator can also be constructed

here. We refer the reader to Section 4 of Sanches et al. (2018) for further details.

An estimator for f (·)

Consider the following kernel density estimator for f (·),

f̂ (p) =
1

MIbf,M

M∑
m=1

I∑
i=1

K

(
Pim − p
bf,M

)
for all p, (13)

where K (·) is a (τ + 1)−th higher order kernel function and bf,M is a bandwidth that is proportional

to the optimal bandwidth that converges to zero at the rate
(
logM
M

) 1
2τ+3 , see Härdle (1991). Let

η∗M ≡
(
logM
M

) τ+1
2τ+3 denote the optimal rate of convergence for density estimation with τ+1 continuous

derivatives (Stone (1982)). Then it is well-known that

sup
p∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (η∗M) a.s., (14)

for any positive δ.

We summarize the convergence rates of q̂, F̂ (·), and f̂ (·) in a proposition.

Proposition 3. Suppose Assumptions D and R hold. Then for the estimators defined in (11) to

(13):

(a) supp∈[P ,P ]

∣∣∣F̂ (p)− F (p)
∣∣∣ = Op

(
1/
√
M
)
;

(b) ‖q̂− q‖ = Op

(
1/
√
M
)
;

(c) For any positive δ, supp∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣ = O (η∗M) a.s.

We next proceed to estimate h (·) using the estimators for q, f (·) and F (·) described above.

An estimator for h (·)

We start by obtaining an estimator for Rim, using

R̂im =

 Pim −
∑I
k=1 q̂kk(1−F̂ (Pim))

k−1

f̂(Pim)
∑I
k=1 q̂kk(k−1)(1−F̂ (Pim))

k−2 for Pim ∈ [P + δ, P − δ]

+∞ otherwise
. (15)
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When R̂im < ∞, R̂im is the estimator of Rim based on on the feasible version of (10). In this case,

R̂im is a smooth function of q̂, F̂ (Pim) and f̂ (Pim). Lemma 6 shows the convergence rate of R̂im

is determined by supp∈[P+δ,P−δ]

∣∣∣f̂ (p)− f (p)
∣∣∣. We effectively omit R̂im when Pim /∈ [P + δ, P − δ]

for the purpose of estimating h (·). The omission does not prevent us from attaining the desired

convergence rates because the probability that R̂im = +∞ is zero asymptotically.

Lemma 6. Suppose Assumptions D and R hold. Then,

sup
i,m s.t. R̂im<∞

∣∣∣R̂im −Rim

∣∣∣ = O (η∗M) a.s .

We define our estimator for h (·) as follows:

ĥ (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
R̂im − r
bh,M

)
for any r, (16)

where K (·) is a kernel function bh,M is the bandwidth. Under the conditions of Theorem 2, the

uniform convergence rate of ĥ (·) is determined by the convergence rate of R̃im.

Theorem 2. Suppose Assumptions D and R hold. Assume the following properties for components

in (16):

(i) K (·) be a symmetric τ−th order kernel with support [−1, 1];

(ii) K (·) is twice continuously differentiable on [−1, 1];

(iii) bh,M is proportional to
(
logM
M

) 1
2τ+3 .

Then for any ς > 0, there exists δ > 0 so that part (c) of Proposition 3 holds such that

sup
r∈[R+ς,R−ς]

∣∣∣ĥ (r)− h (r)
∣∣∣ = O

((
logM

M

) τ
2τ+3

)
a.s .

The rate
(
logM
M

) τ
2τ+3 is equal to η∗M

bh,M
, which is the optimal convergence rate GPV derived in their

paper. This rate is achieved by choosing bh,M that oversmooths relative to the optimal bandwidth

for a τ−times continuously differentiable density function.

Next, we extend the study of uniform convergence rate for an estimator of h (·) over
[
R + ςM , R− ςM

]
for some ςM = o (1). This requires us to provide a rate for an estimator of f (·) over intervals that
expand towards

[
P , P

]
, which turns out to be an unusual problem5 because f (·) has a pole at P

5One of the main assumptions commonly used in deriving uniform convergence rates of a kernel density estimator

is boundedness of the underlying density. E.g., see Andrews (1995), Masry (1996), Fan and Yao (2003) and Hansen

(2008).
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(Lemma 4(b)). Particularly, we should expect a slower convergence rate in the vicinity of a pole

since the asymptotic variance and bias of kernel density estimator are pointwise proportional to the

underlying density and its derivatives respectively.

To this end, we apply the log-transformation approach suggested in Srisuma (2023) to estimate

f (·). His proposal is based on the observation that a log-transformed random variable will have

a bounded density under a mild regularity condition. In the context of our application, without

having to specify the divergence rate of f (·), the log-transformed price will have a bounded density
as long as the limit of

(
P − p

)
f (p) as p → P exists6,7. Subsequently, we can estimate f (·) at any

convergence rate that is slower than η∗M uniformly over a suitably expanding support (cf. (14)) using

the back-transformed estimator, which in turn allows us to estimate h (·) at any rate slower than(
logM
M

) τ
2τ+3 over an expanding support in a similar way as we have shown in Theorem 2.

Let P †im ≡ − ln
(
P − Pim

)
. Denote the pdf of P †im by f

† (·) that is positive on [− ln
(
P − P

)
,∞).

By a change of variables, we have f (p) =
f†(− ln(P−p))

P−p for p ∈ [P , P ]. Lemma 7 says that

limp→P
(
P − p

)
f(p) exists, which ensures f † (·) and its derivatives are bounded by Lemma 8. We

estimate f † (·) using a standard kernel density estimator with
{
P †im

}I,M
i=1,m=1

that will achieve the

η∗M−convergence rate. We then multiply this estimator by
(
P − p

)−1
to get the back-transformed

estimator. Since p 7→
(
P − p

)−1
increases to infinity as p→ P , the back-transformation slows down

the uniform convergence rate as the support expands.

Lemma 7. Suppose Assumption D(i) holds. Then limp→P
(
P − p

)
f(p) exists.

Lemma 8. Suppose Assumptions D(i) and R hold. Then

(a) f † (·) is bounded;
(b) f † (·) admits upto τ + 1 continuous and bounded derivatives on [− ln

(
P − P

)
,∞) for the

same τ as in Assumption R.

6When limp→P
(
P − p

)
f(p) exists, it must be 0. We show the limit is indeed 0 in the proof of Lemma 7. This

corresponds to the rate that
(
P − p

)−1
diverges as p → P is an upper bound on the divergence rate of f (·); cf.

Proposition 2(a) in Srisuma (2023).
7We refer the reader to Srisuma (2023) for further discussions on why the rate that

(
P − p

)−1
diverges as p→ P

is a suitable choice for an upper bound on the divergence rate of f (·) at P ; examples of primitive conditions that
imply the existence of limp→P

(
P − p

)
f(p); and, other ways to construct estimators that can obtain the same uniform

convergence rate as the one based on a log-transformation.
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Formally, the back-transformed estimator is defined as follows:

f̃ (p) =
f̂ †
(
− ln

(
P − p

))
P − p

, where (17)

f̂ †
(
p†
)

=
1

MIbf†,M

M∑
m=1

I∑
i=1

K

(
P †im − p†
bf†,M

)
for all p†.

By using a (τ + 1)−th higher order kernel and set bf†,M to be proportional to
(
logM
M

) 1
2τ+3 , we have∣∣∣f̂ † (p†)− f † (p†)∣∣∣ = O (η∗M) a.s. uniformly over any fixed inner proper subset of [− ln
(
P − P

)
,∞).

Since f̃ (p)− f (p) =
f̂†(− ln(P−p))−f†(− ln(P−p))

P−p , we have
∣∣∣f̃ (p)− f (p)

∣∣∣ = O (η∗M) a.s. uniformly over

any fixed inner subset of
[
P , P

]
.

There are two factors that affect the uniform convergence rate of f̃ (·) over [P + δ′M , P − δ′′M ]

when both δ′M and δ′′M are o (1). One is the boundary bias from estimating f † (p) when p† lies

within a bf†,M -neighborhood from − ln
(
P − P

)
. The other is the divergence of

(
P − p

)−1
diverges

as p→ P . We can avoid the boundary effect at the lower boundary by limiting the rate δ′M goes to

zero according to P − exp
(
ln
(
P − P

)
− bf†,M

)
= o(δ′M). We can choose the divergence rate from

the back-transformation. Suppose p→ P at the rate δ′′M , then

sup
p∈[P+δ′M ,P−δ′′M ]

∣∣∣f̃ (p)− f (p)
∣∣∣ = O

(
η∗M
δ′′M

)
a.s.

Thus, we can always find an interval expanding to [P , P ] that f̃ (·)− f (·) converges uniformly over
at any rate that is slower than η∗M . We state this as a proposition.

Proposition 4. Suppose Assumptions D(i) and R hold. Then for any sequence of positive reals

{ηm}
M
m=1 that decreases to 0 such that η∗M = o (ηM), there exists some sequence {δm}Mm=1 that de-

creases to 0 such that supp∈[P+δM ,P−δM ]

∣∣∣f̃ (p)− f (p)
∣∣∣ = O (ηM) a.s.

We can then estimate Rim on using f̃ (·), and use it to estimate h (·) as done previously in (15)
and (16) respectively. Specifically, for any δM > 0 let

R̃im =

 Pim −
∑I
k=1 q̂kk(1−F̂ (Pim))

k−1

f̃(Pim)
∑I
k=1 q̂kk(k−1)(1−F̂ (Pim))

k−2 for Pim ∈ [P + δM , P − δM ]

+∞ otherwise
, (18)

h̃ (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
R̃im − r
bh,M

)
for any r. (19)

The following results are similar to Lemma 6 and Theorem 2. They differ in that the rates do not

reach the optimal rate and they hold over a sequence of expanding intervals.
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Lemma 9. Suppose Assumptions D and R hold. Then for any sequence of positive reals {ηm}
M
m=1

that decreases to 0 such that η∗M = o (ηM), there exists some sequence {δm}Mm=1 as described in
Proposition 4 such that

sup
i,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣ = O (ηM) a.s .

Theorem 3. Suppose Assumptions D and R hold. Assume the following properties for components

in (19):

(i) K (·) be a symmetric τ−th order kernel with support [−1, 1];

(ii) K (·) is twice continuously differentiable on [−1, 1];

(iii) bh,M is proportional to
(
logM
M

) 1
2τ+3 .

Then for any ηM that satisfies η∗M = o (ηM) and ηM = O
(
b2h,M

)
, and for ςM that decreases to zero

such that bh,M = o (ςM),

sup
r∈[R+ςM ,R−ςM ]

∣∣∣h̃ (r)− h (r)
∣∣∣ = O

(
ηM
bh,M

)
a.s .

The uniform convergence rate for h̃ (·) is derived over an expanding support that avoids the
boundary effect as well as anticipating the pole effect. We highlight the condition Theorem 3 imposes,

which is not required in Theorem 2, is ηM = O
(
b2h,M

)
. This is a mild condition to handle the pole.

In particular, this condition is not restrictive when τ ≥ 2. To see this, suppose ηM = η∗MφM for

some φM with limM→∞ φM =∞, then ηM = O
(
b2h,M

)
is equivalent to φM

(
logM
M

) τ−1
2τ+3 = O (1). Since

we are only be interested in φM that diverges to infinity slowly, we can choose it to diverge at an

arbitrarily slow rate.

5 Extensions

We consider two extensions of the nonparametric identification arguments presented in Section 3.

The first allows products to be vertically differentiated that can be useful for modeling systematic

price differences across firms. The second introduces an intermediary that can search on behalf of

consumers at a fee. Our discussions in this section will focus on identification. We will show the

estimation strategy and the results on convergence rates of developed in Section 4 are applicable to

these settings.
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5.1 Vertical Product Differentiation

Let firm i’s product is characterized by νi ∈ R, which is a measure of differentiated quality. The
econometrician will observe market share and prices but not quality of the products. The main

modeling assumption employed by Wildenbeest (2011), in a complete information model, is that the

difference between quality and marginal cost is the same for all firms. A natural way to extend his

idea to an incomplete information game is to put a common distribution around νi for all i. We will

show a quasi-symmetric equilibrium, where optimal pricing strategies between firms differ only by

the differences in their qualities, can then be characterized analogously to Theorem 1.

Consumer’s Best Responses

Consumers now value products from different firms differently. The utility they derive from purchas-

ing from seller i is Ui. We assume,

Ui := ν0 + νi − Pi, (20)

where ν0 denotes the common value of the product, νi denotes the valuation of the differentiating

component due to firm i, and Pi denotes its corresponding price. One can, for example, attribute

νi to physical quality or other experience associated with purchasing from firm i. A consumer with

search cost c faces the following decision problem:

max
1≤k≤I

EL
[
U(k:k)

]
− ck.

A purchase is always made so that ν0 does not enter our analysis, just as it does not in the model

with a homogeneous product. For the moment suppose firms set prices such that {Ui}Ii=1 is a random
sample. Then, for k ≥ 1, let U(k:k) be the maximum of k i.i.d. random variables of utilities and EL [·]
denotes an expectation where the random utilities have distribution described by the cdf L (·).
We denote the expected marginal utility gain from a purchase when a consumer searches one

more firm when she has already searched k − 1 firms by,

Υk (L) := EL
[
U(k:k)

]
− EL

[
U(k−1:k−1)

]
. (21)

We set U(0:0) to be 0. The consumer’s best response is to search once if c > Υ1 (L), and search k > 1

times if Υk−1 (L) < c ≤ Υk (L). Analogous to the discussions in Section 2.1, Υk (L) is positive and

strictly decreasing when the distribution of Ui is non-degenerate.

Firm’s Best Responses

We assume firm i’s production cost consists of a sum of deterministic (determined by quality) and

random components:

Ri = νi +R0i,
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where R0i has cdf H0 (·) supported on R0 ∈
[
R0, R0

]
for some R0 > R0 > 0. We denote the support

of Ri by Ri :=
[
νi +R0, νi +R0

]
. We assume firm costs are independent draws to preserve the

independent value environment. Subsequently {R0i}Ii=1 is an i.i.d. sequence of random variables.

We restrict our attention to quasi-symmetric pricing strategies where firms’strategies are affi ne

translations from one another. Denote firm i’s pricing strategy by βi (·;q) : Ri → Pi, where Pi =[
νi + P 0, νi + P 0

]
and βi (·;q) = νi + β0 (·;q) and β0 (·;q) : R0 → P0 =

[
P 0, P 0

]
. We denote the

valuation-cost markup by Xi := νi − Ri. By construction Xi = −R0i and {Xi}Ii=1 is i.i.d. across
firms. Since Ui = νi − Pi, we can equivalently study the firm i’s profit maximization problem where

the firm sets the level of utility consumers would get from buying its product instead of setting prices.

I.e., for any xi ∈
[
−R0,−R0

]
, consider

max
u

Γ (u, xi;q) , where

Γ (u, xi;q) = (xi − u)

I∑
k=1

qk
k

I
P
[
U(k−1:k−1) ≤ u

]
.

Suppose a solution to the maximization problem above exists and let µ (xi;q) := arg maxu Γ (u, xi;q)

for any (xi,q). We assume that µ (xi;q) to be increasing in xi and satisfies the boundary condition

that µ
(
−R0;q

)
= R0. Under this premise, we can apply the arguments used to obtain (4) to show

that

µ (x (r0i) ;q) = x (r0i)−

I∑
k=1

qkk
∫ R0
s=r0i

(1−H0 (s))k−1 ds

I∑
k=1

qkk (1−H0 (r0i))
k−1

, (22)

for any r0i ∈ R0 and x (r0i) := −r0i. Therefore {µ (x (R0i) ;q)}Ii=1 is an i.i.d. sequence of random
utilities that firms offer to the consumers upon drawing {R0i}Ii=1 as a best response given q.
For any ri = νi+ r0i, since µi (xi (ri) ;q) = νi−βi (ri;q), it follows that βi (ri;q) = νi+β0 (r0i;q)

where,

β0 (r0i;q) = r0i +

I∑
k=1

qkk
∫ R0
s=r0i

(1−H0 (s))k−1 ds

I∑
k=1

qkk (1−H0 (r0i))
k−1

. (23)

β0 (·;q) has an identical structure to β (·;q) as defined in (4). Therefore the properties of each firm’s

pricing strategy derived here are the same as that of the homogeneous product case other than being

shifted by a constant νi. In particular β0 (·;q) is strictly increasing when q1 < 1, and its inverse

takes the same form as (10) in Lemma 5.
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Equilibrium

We define a quasi-symmetric equilibrium where players using pricing strategies that are affi ne trans-

lation from each other. Theorem 4 gives a characterization of the equilibrium (cf. Theorem 1). Its

proof and the definition of a quasi-symmetric equilibrium are in the Appendix.

Theorem 4. In a quasi-symmetric equilibrium (q, F0) ∈ SI−1 × F0, where the equilibrium pricing

strategies are strictly increasing, q satisfies the following system of equations:

qk =

 1−G
(∫
F0 (p) (1− F0 (p)) dp

)
for k = 1

G
(∫

F0 (p) (1− F0 (p))k−1 dp
)
−G

(∫
F0 (p) (1− F0 (p))k dp

)
for 1 < k < I

,

where F0 (p) = H0 (ξ0 (p;q)) for all p ∈
[
P , P

]
and ξ0 (·;q) is the inverse of β0 (·;q).

5.1.1 Identification

We assume our data satisfy the following conditions.

Assumption DE1. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that:

(i) there exists (q, F0) ∈ SI−1 ×F with q1 ∈ (0, 1) so that Pim = νi + β0 (R0im;q) where β0 (·;q)

has been defined in (23) and {R0im}I,Mi=1,m=1 is i.i.d. with positive and finite density almost everywhere
on
[
R0, R0

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is i.i.d. such that the joint distribution of (Yim, P0im) satisfies,

E [Yim|P0im] =
I∑

k=1

qk
k

I
(1− F0 (P0im))k−1 . (24)

Assumption DE1 has an analogous interpretations to Assumption D. If we observe {νi}Ii=1, we can
construct {P0im}I,Mi=1,m=1, then identification immediately follows the same steps described in Section
3. In particular: (i) use {P0im}I,Mi=1,m=1 to identify f0 (·) and F0 (·); (ii) identify q from (24) (cf.

Lemma 3), combine it with {Υk}I−1k=1, we can identify {G (Υk)}I−1k=1 (cf. Proposition 1); (iii) recover

{R0im}I,Mi=1,m=1 from

R0im = P0im −
∑I

k=1 qkk (1− F0 (P0im))k−1

f0 (P0im)
∑I

k=2 qkk (k − 1) (1− F0 (P0im))k−2
, (25)

cf. (10), which in turn identifies H0 (·) (cf. Proposition 2).
We, however, do not observe {νi}Ii=1. The key insight to proceed is that optimal search behavior

is determined by the shape of the equilibrium price distributions, which is the same for all firms, and
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not their locations that may differ. Subsequently, relative utilities are identified by relative demeaned

prices. To see this recall Uim = νi − Pim, so for all i and j:

Uim − Ujm = P0jm − P0im = ωjm − ωim, (26)

where ωim denotes Pim − E [Pim], thus the second equality above follows from E [P0im] = E [P0jm].

Our identification results rely on the distribution of ωim, which identified. We denote the pdf

and cdf of ωim by w (·) and W (·) respectively. Note that F0 (·) and W (·) are parallel to each other
by construction. A useful relation that immediately follows from inspecting (26) is that the cdfs of

P0im and ωim coincide when evaluated at their respective points of realizations. We state this as a

lemma. We use it to identify the consumer search distribution.

Lemma 10. Suppose Assumption DE1 holds. Then F0 (P0im) = W (ωim) for all i and m.

Proposition 5. Suppose Assumption DE1 holds. Then G (Υk) is identified for k = 1, . . . , I − 1.

Proof. By Lemma 10, any q that satisfies (24) also satisfies

E [Yim|ωim] =
I∑

k=1

qk
k

I
(1−W (ωim))k−1 .

We can then identify q in closed-form as done in Lemma 3. From (21), we can also identify Υk in

the same way we identify ∆k in Section 3.1 by replacing the raw prices with the demeaned prices.

We can then apply the argument used to prove Proposition 1 to identify {G (Υk)}I−1k=1 from q and

{Υk}I−1k=1. �

On the supply side, we can identify the shape of the distribution of R0im but not its location.

This is clear from (25) because we can only identify the shape of the distribution of P0im. More

precisely, what we can identify is the distribution of ρim := R0im − E [P0im].

Proposition 6. Suppose Assumption DE1 holds. Then the distribution of ρim is identified.

Proof. Replace (P0im, f0 (P0im) , F0 (P0im)) in the RHS of (25) by (ωim, w (ωim) ,W (ωim)) to con-

struct ρim. Then apply Lemma 10.�

Propositions 5 and 6 show we can use {ωim}I,Mi=1,m=1 instead of price to identify the demand and
supply side parameters in the same way as done in Sections 3.1 and 3.2 respectively. Analogous esti-

mators and results on convergence rates discussed in Section 4 are therefore immediately applicable.

It is worth commenting that not knowing {νi}Ii=1 does not limit the scope of counterfactual studies
relative to the model with homogenous goods. This is because consumers in our model bear the cost

of quality differences and get compensated in equal amount in terms of utility. Thus we can study
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changes in search behavior and the price distribution associated with quality adjusted production

costs. We can identify these effects by comparing the difference of price distributions generated from

the old and new equilibria where firms are treated symmetrically such that every firm draws cost

from the same distribution as ρim.

5.2 Intermediary

Next, we assume there is an intermediary, which we will also refer to as broker. Our model is closely

related to Salz (2020). We adopt his key assumption that a consumer with very high cost consumers

prefer to pay a broker to search. The broker then performs an exhaustive search and gives such

consumer the lowest price.

Consumer’s Best Responses

Previously we saw that it is optimal for a consumer that draws c > ∆1 (F ) to search once. If a

broker charges φ to conduct an exhaustive search for such consumer, the cost that makes a consumer

indifferent between searching once or delegating search solves: EF [P ] + c = φ + EF
[
P(1:I)

]
. Let us

denote such cost by ∆0 (F ) := φ + EF
[
P(1:I)

]
− EF [P ]. We take φ to be exogenous. Following Salz

(2020), we focus on an equilibrium where c > ∆0 (F ) has positive probability and ∆0 (F ) > ∆1 (F ).

This allows us to generalize Lemma 1 and define a consumer’s best response to be a map σ̃D : F → SI

such that for any F in F ,

σ̃D (F ) =


1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

G (∆k (F ))

for k = 0

for 0 < k < I

for k = I

.

Firm’s Best Response

Let us denote the proportion of consumers that use a broker by q0 < 1. Firm i chooses price to

maximize Λ̃ (p,Ri; q0,q) where:

Λ̃ (p,Ri; q0,q) := (1− q0) (p−Ri)
I∑

k=1

qk
k

I
P
[
P(1:k−1) > p

]
+ q0 (p−Ri)P

[
P(1:I−1) > p

]
,

where q now represents a vector of proportions of consumers that search a different number of firms,

conditioning on them searching, so that (q0,q) ∈ [0, 1)× SI−1. The two additive components on the
RHS in the display above are firm i’s expected payoffs from the consumers that search and use an

intermediary respectively. It will be useful to define the vector q̃ (q0,q) := (q̃k (q0,q))Ik=1 ∈ SI−1 with
the following components,
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q̃k (q0,q) = (1− q0) qk for 0 < k < I and q̃I (q0,q) = (1− q0) qI + q0. (27)

Then, we have for all (p, r) and (q0,q),

Λ̃ (p, r; q0,q) = (p− r)
I∑

k=1

q̃k (q0,q)
k

I
P
[
P(1:k−1) > p

]
= Λ (p, r; q̃ (q0,q)) ,

where Λ (·) is the same function used in Section 2.2. Subsequently, the solution to the maximization
problem above is given by β (·; q̃ (q0,q)) (see (4)) where β (·; q̃ (q0,q)) is strictly increasing when

q̃1 (q0,q) < 1. Notably, its inverse takes the same form as (10) given in Lemma 5 and the character-

istics of the equilibrium price distribution of Lemma 7 applies when q̃1 (q0,q) > 0.

Equilibrium

We characterize an equilibrium for a search model with an intermediary as follows.

Theorem 5. In a symmetric equilibrium (q0,q, F ) ∈ [0, 1) × SI−1 × F , where ∆0 (F ) > ∆1 (F )

and the equilibrium pricing strategies are strictly increasing, (q0,q) satisfies the following system of

equations:
q0

(1− q0) qk
(1− q0) qI

=

=

=

1−G (∆k (F ))

G (∆k−1 (F ))−G (∆k (F ))

G (∆k (F ))

for k = 0

for 0 < k < I

for k = I

,

where F (p) = H (ξ (p; q̃ (q0,q))) for all p ∈
[
P , P

]
and ξ (·; q̃ (q0,q)) is the inverse of β (·; q̃ (q0,q)).

Identification

We can apply the same identification strategy as in Section 3 when q0 is known. We make the

following assumptions.

Assumption DE2. {(Yim, Pim)}I,Mi=1,m=1 is a sequence of random variables such that for a known

q0 ∈ (0, 1):

(i) there exists (q, F ) ∈ SI−1 × F with q1 ∈ (0, 1) so that Pim = β (Rim; q̃ (q0,q)) where β (·;q)

and q̃ (q0,q) are defined in (4) and (27) respectively, and {Rim}I,Mi=1,m=1 is i.i.d. with positive and
finite density almost everywhere on

[
R,R

]
;

(ii) {(Y1m, . . . , YIm)}Mm=1 is i.i.d. such that the joint distribution of (Yim, Pim) satisfies,

E [Yim|Pim] =
I∑

k=1

q̃k (q0,q)
k

I
(1− F (Pim))k−1 . (28)
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The known q0 assumption is suitable when the proportion of consumers who used a broker can

be identified directly from the data. Examples of this include Salz (2020) and our application in

Section 7. Other than assuming q0 ∈ (0, 1), the discussions on Assumption D are applicable to the

remainder of Assumption DE2.

Under Assumption DE2, q̃ (q0,q) is identified as long as E
[
XimX

>
im

]
has full rank (Xim is defined

as in Section 3.1). We can then identify {G (∆k)}I−1k=0 as in Proposition 1.

Proposition 7. Suppose Assumption DE2 holds and E
[
XimX

>
im

]
has full rank. Then G (∆k) is

identified for k = 0, 1, . . . , I − 1.

Proof. First apply Lemma 3 to identify q̃ (q0,q). Since q0 is known, q is identified from q̃ (q0,q).

Subsequently, G (∆0) = 1− q0 and G (∆k) = 1− q0 − (1− q0)
∑k

k′=1 qk′ for k > 0.�

Once q̃ (q0,q) is known, we can identify H (·). The argument in Section 3.2 applies directly,
because the inverse of β (·; q̃ (q0,q)) takes the same form as (10) and the price distribution is identified.

6 Monte Carlo Study

The purpose of this section is to numerically investigate theoretical features of our model. We consider

a simple design with three firms. Consumers draw costs from a distribution with cdf G (c) =
√
c for

c ∈ [0, 1]. Firms draw costs from a uniform distribution on [0, 1]. We solved for the equilibrium of

the game by iterating the system of equations in (6). We tried different initial values and found only

one equilibrium that generates price dispersion with q = (0.7852, 0.0455, 0.1693). We generate data

from this equilibrium for 333 markets, so IM = 999, by drawing prices prices from (4) and market

shares from (7).

We focus on the nonparametric estimators of f (·) and h (·). We estimate F (·) and q using the
estimators described in Section 4. For f (·) and h (·), while the estimators mentioned in Section
4 are suffi cient in delivering the desired convergence rate uniformly over an expanding interval, in

practice we can use data outside of the interval that are closer to the boundaries if they can be well

estimated. Following the suggestion of Hickman and Hubbard (2015), who estimated a first-price

auction model, we employ a boundary corrected kernel and use all observations. Their choice for the

boundary correction is based on the estimator of Karunamuni and Zhang (2008, henceforth KZ), and

they show it works well in small samples (also see Li and Liu (2015) in another auction application).

We note that our estimation problem is more challenging than a pure auction setup because we have

to estimate f (·), which has a pole, and the estimation of h (·) has additional sampling errors from
estimating q and F (·).
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We consider two estimators for f (·). f̂1 (·) is an estimator based on KZ that accounts for the
boundary effects but ignores the presence of the pole. f̂2 (·) uses the transformation described in
equation (17) to accommodate the pole and applies boundary correction at the lower boundary. We

use the Epanechnikov kernel for all of our estimators. Boundary correction uses the optimal endpoint

kernel and associated plug-in constants and bandwidths suggested in KZ. Figures 1 and 2 plot the

mean and the 5th and 95th percentiles for each
(
f̂1 (·) , f̂2 (·)

)
against the true price pdf. We see

that f̂1 (·) performs quite well near the lower support point but not near the pole. f̂2 (·) performs
much better near the pole. A careful inspection, however, shows the bias of f̂2 (·) is generally larger
than that of f̂1 (·) away from the pole.We next estimate h (·). The plots in Figures 3 and 4 contain
the mean and the 5th and 95th percentiles of KZ boundary corrected estimators,

(
ĥ1 (·) , ĥ2 (·)

)
,

that correspond respectively to
(
f̂1 (·) , f̂2 (·)

)
. These figures also include analogous plots from an

infeasible KZ boundary corrected estimator constructed from the estimated costs when the true f (·)
is used, while q and F (·) are still estimated, to highlight the effect of density estimation. The
infeasible estimator is generally the superior estimator as expected, although it is worth noting that

even the infeasible estimator still suffer from the boundary effect. For the feasible estimators, ĥ2 (·)
has lower bias over its lower half of the support compared to the upper half due to substantial bias

from estimating f (·) near the pole. In contrast, ĥ2 (·) performs extremely well closer to the upper
support and its distribution is concentrated around the mean over the whole support, however its

bias increases as it approaches the lower boundary.

The simulation study illustrates the performance of ĥj (·) inherits characteristics of f̂j (·). There-
fore it is clear one should account for the boundary effect at the lower support as well as the pole at

the upper support. One way to proceed in practice is to perform some kind of model averaging. As-
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ymptotically, such estimator will be consistent since
(
f̂1 (·) , f̂2 (·)

)
, and subsequently

(
ĥ1 (·) , ĥ2 (·)

)
,

are consistent estimators on the interior of the support.

7 Empirical Application

7.1 Data and setup

This section aims to illustrate how adaptations of our baseline model can be applied to a rich dataset

through the lens of a search model. The particular adaptations are: (i) incorporating observable firm

and consumer heterogeneity as well as market heterogeneity; (ii) introducing an intermediary who

provides information about prices in exchange for a fee (see section 5.2); (iii) showing how some parts

of the estimation procedure can be conducted parametrically to deal with the curse of dimensionality.

Our application is on the mortgage search of British households, which is related our other work:

the technical report in Mýsliwski and Rostom (2022, MR hereafter). The data come from the Product

Sales Database containing loan-level administrative data for all new mortgages in the UK. We focus

on fixed rate mortgage products offered with two-, three-, and five-year durations; and to loan sizes

less than £ 1M(illion) from 2016 and 2017. The sellers in our model are the six biggest banks that

account for around 75% of all mortgages issued in the UK. Transaction data from these banks is

representative of the British mortgage market as the their products are standardized compared to

niche mortgagors, such as credit unions and building societies; the mortgage products we consider are

available to all borrowers across the country. The omission of smaller lenders is also consistent with

27



our structural model as, even in aggregate, they may have different cost distributions to the biggest

lenders due to tighter budget constraints and more stringent capital requirements (Benetton (2021)).

For further background details, we refer the reader to MR for descriptions of the UK mortgage

market, dataset, and the descriptive evidence of price dispersion that motivates the use of a search

model.

Like MR, markets in our application are defined temporally as 24 months over 2016 and 2017.8

Our empirical strategy, however, differs from MR as we combine parametric and nonparametric

approaches for estimation. Specifically, we impose parametric assumptions on the price distribution

and the firm’s cost distribution, and we aggregate household prices and shares for each lender,

conditional on loan and borrower characteristics, each month in order to estimate the consumer’s cost

distribution and inverting the firms’production costs according to our nonparametric identification

strategy. Our estimation sample involves 1.3M individual transactions.

Since fixed rate mortgage prices are two-part tariffs with an initial fee and a (fixed) interest rate,

we follow Allen, Clark, and Houde (2019)) and construct price based on monthly mortgage cost

defined as P = iL + Fee
N
, where i is the interest rate in the initial, fixed-rate period, L is the size

of the loan, Fee is the up-front fee, and N is the initial period of the mortgage contract (24, 36, or

60 months). We detrend prices to remove dispersion from macroeconomic shocks (e.g. changes to

the Bank of England’s interest rate) and deflate them to January 2016 levels. We further normalize

this measure to correspond to the median-sized loan in the data (around £ 150k). Even with the

detrending and normalization, loans can still differ of observable characteristics which we label as zl.

Moreover, we allow for different borrower types (e.g. younger/older, more/less wealthy households)

to draw their search costs from different distributions. Those characteristics are denoted by zb. Table

1 lists out zb and zl.

7.2 Estimation

We observe borrowers with different prices for the same borrower-loan type (zb, zl). First, we use the

transaction prices to estimate the equilibrium price distribution under the assumption that it has

a Beta distribution conditional on (zb, zl, Y r), where Y r denotes the Year 2017 dummy, which we

parameterize with a 3-way interactions of (zb, zl, Y r). Then, we estimate the search cost distribution

nonparametrically following our identification strategy in the previous sections. This requires us

to aggregate consumers’prices in each market. In what follows, for any (zb, zl, Y r), let Y
(zb,zl,Y r)
im

8While we do not formally test the random sampling assumption, by performing joint significance tests on a series

of AR models, we fail to reject the no-autocorrelation hypothesis in market shares and prices for the majority of

borrower-seller characteristic configurations for each lender.
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and P (zb,zl,Y r)im denote market share and price of lender i in month m, respectively, where we use

the median price to represent P (zb,zl,Y r)im . Such representation seems reasonable for our application,

for example, as Benetton (2021) has argued the UK mortgage market is characterized by posted

rather than individualized prices since mortgage offers are based on observables with little room

for negotiation. Variation in prices for each lender-market-product combination is therefore due to

discretization of loan characteristics rather unobserved product differentiation. Nevertheless, we have

explored other representative market prices as a robustness check by using we the average price or

several other price quantiles. Our results are largely robust to different representations for P (zb,zl,Y r)im .

Variable Values

Borrower characteristics: zb
Age < 30, 30+

Income Below/above median

FTB status First-time-buyer (FTB), Non-FTB

Location Urban, Rural

Loan characteristics: zl
LTV ≤ 70, 71-75, 76-80, 81-85, 86-90, 91-95

Deal length 2-, 3-, 5-year

Term < 10, (10, 15], (15, 20], (20, 25], (25, 30], (30, 35]

Loan value 4 quartiles

Table 1. List of observable heterogeneities in the model.

We estimate our model following these steps:

1. Estimate F (·|zb, zl, Y r). Assume transaction price has a Beta distribution conditional on (zb, zl, Y r)

with the location and precision parameters governed by θ1 (zb, zl, Y r) and θ2 (zb, zl, Y r), respectively:

θk (zb, zl, Y r) = θ0k + θ>1kzb + θ>2kzl + θ3kY r+ θ>4kzb ◦ zl + θ>5kzb ◦ Y r+ θ>6kzl ◦ Y r+ θ>7kzb ◦ zl ◦ Y r,

for k = 1, 2. With an abuse of notation, we use ◦ between two variables to denote a vector of all
possible interactions of their components. Take price to be i.i.d. within each year and independent

across years, we estimate
(
θ>1 , θ

>
2

)>
by maximum likelihood9.

9We performed the estimation in R using the betareg package. This procedure reparameterizes the usual

two shape parameters of a beta distribution into the mean and a precision parameter. For more details, see:

https://cran.r-project.org/web/packages/betareg/index.html

Furthermore, since the beta distribution is supported on a unit interval, we first rescaled price and transformed it

back. Specifically, we recovered the original pdf and cdf by: (i) let P̃ (zb,zl)im =
P
(zb,zl)
im −P (zb,zl)

P
(zb,zl)−P (zb,zl)

where
(
P (zb,zl), P

(zb,zl)
)
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2. Estimate q̃ (zb, zl, Y r). Use
{(
Y
(zb,zl,Y r)
im , P

(zb,zl,Y r)
im

)}I,M
i=1,m=1

to perform constrained least squares

based on minimizing
∥∥∥Y(zb,zl,Y r) − X̂(zb,zl,Y r)q

∥∥∥2 subject to q summing to 1 and q ≥ 0 to obtain̂̃q (zb, zl, Y r). Y (zb,zl,Y r) is the vector of market shares and
(
X̂
(zb,zl,Y r)
m

)
ik

= k
I

(
1− F̂ (Pim|zb, zl, Y r)

)k−1
with F̂ (·|zb, zl, Y r) taken from Step 1.

3. Estimate G (·|zb). Estimate G (∆0 (zb, zl, Y r) |zb) by 1 − q̂0 (zb, zl, Y r) and G (∆k (zb, zl, Y r) |zb)
by 1 − q̂0 (zb, zl, Y r) − (1− q̂0 (zb, zl, Y r))

∑k
k′=1 q̂k′ (zb, zl, Y r) for k > 0. q̂0 (zb, zl, Y r) is the

proportion of borrowers using a broker and q̂k (zb, zl, Y r) =
(̂̃q(zb,zl,Y r))

k

1−q̂0(zb,zl,Y r) for 1 ≤ k < I and

qI (zb, zl, Y r) =
(̂̃q(zb,zl,Y r))

I
−q̂0(zb,zl,Y r)

1−q̂0(zb,zl,Y r) where ̂̃q (zb, zl, Y r) is from Step 2.

4. Estimate ∆k (zb, zl, Y r). Use F̂ (·|zb, zl, Y r) from Step 1 to simulate prices and estimate∆k (zb, zl, Y r)

by EF̂ (·|zb,zl,Y r)
[
P(1:k)

]
− EF̂ (·|zb,zl,Y r)

[
P(1:k+1)

]
for k > 0 and ∆0 (zb, zl, Y r) by φ̂ (zb, zl, Y r) +

EF̂ (·|zb,zl,Y r)
[
P(1:I)

]
− EF̂ (·|zb,zl,Y r) [P ] where φ̂ (zb, zl, Y r) is the median broker fee.

5. Estimate h (·|zl, Y r). Let R̂(zb,zl,Y r)im = P
(zb,zl,Y r)
im −

∑I
k=1(

̂̃q(zb,zl,Y r))kk(1−F̂ (P (zb,zl,Y r)im |zb,zl,Y r))k−1

f̂(P
(zb,zl,Y r)
im |zb,zl,Y r)

∑I
k=1(

̂̃q(zb,zl,Y r))kk(k−1)(1−F̂ (P (zb,zl,Y r)im |zb,zl,Y r))k−2

where
(
f̂ (·|zb, zl, Y r) , F̂ (·|zb, zl, Y r)

)
are from Step 1 and ̂̃q (zb, zl, Y r) is from Step 2. Take

R̂
(zb,zl,Y r)
im to be i.i.d. across i for each m, whose distribution is independent across m, and R̂(zb,zl,Y r)im

has a Beta distribution conditional on (zl, Y rm) with the location and precision parameters governed

by π1 (zl, Y r) and π2 (zl, Y r), respectively, such that, for k = 1, 2:

πk (zl, Y r) = π0k + π>1kzl + π2kY r + π>3kzl ◦ Y r.

Other than the parametric estimation of price and lender’s cost distributions, we follow closely

the nonparametric identification strategy from Step 2 to construct R̂(zb,zl,Y r)im in Step 5. In particular,

we do not specify G (·|zb) to have a particular parametric distribution. Note that, relating to our
discussion in Section 3.2, the variation in (zl, Y r) allows us to identify G (·|zb) at more points than
the case without lender or market heterogeneity. Specifically, for a given zb, we have estimates of

G (∆k (zb, zl, Y r) |zb) for k = 1, . . . , 5 for each (zl, Y r) combination. Following Sanches et al. (2018),

for example, we can pool estimates of {G (∆k (zb, zl, Y r) |zb)}5k=1 across all (zl, Y r) combinations by

series estimation.

are the min and max prices; (ii) perform betareg with
{
P̃
(zb,zl)
im

}I,M
i=1,m=1

to estimate f̃ (·|zb, zl) and F̃ (·|zb, zl);

(iii) estimate f (·|zb, zl) and F (·|zb, zl) using f (p|zb, zl) = 1

P
(zb,zl)−P (zb,zl)

f̃

(
p−P (zb,zl)

P
(zb,zl)−P (zb,zl)

|zb, zl
)
and F (p|zb, zl) =

F̃

(
p−P (zb,zl)

P
(zb,zl)−P (zb,zl)

|zb, zl
)
respectively.
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In terms of our modeling choice, we choose the Beta distribution because it allows for poles at

the boundaries. We model the equilibrium price distribution using an interactive 3-way model of

(zb, zl, Y r) that allows for rich interactions between variables. We assume the search cost distribution

is the same across the years, while the firm’s costs in 2016 and 2017 can differ. These particular

selections are made in parts due to estimation feasibility10 and for brevity’s sake11.

7.3 Results

Given the richness of our models, we will be selective in presenting our results. Before discussing the

primitives, we highlight main observations from our estimates for the price distribution, which is a

reduced form object in our model. We found that, in levels, most of the loan characteristics have the

expected sign relative to the baseline category. For examples, larger and riskier loans with longer

crediting periods are generally more expensive, and those with higher income also pay less, which

is consistent with the notion that wealthier individuals are more financially literate and know they

should be comparing prices. A comprehensive descriptive study of the interactive effects is beyond

the scope of our empirical illustration12, which focuses on the model primitives.

For the search cost distributions, Table 2 presents the search cost quartiles for 16 different bor-

rower types (referred to as zb−comb(inations). Age: L (below 30)/H (over 30). Inc(ome): L (below
median)/H (above median). FTB (first time buyer status): Yes/No. Urb(an): U (urban area)/R

(rural area). Columns 5-7 contains the median search cost in £ /month in the initial period. Col-

umn 8 expressed in relative terms (divided by median and average monthly payment, respectively).

Bootstrap standard errors in parentheses based on 500 replications.

The results reveal several interesting patterns: first, there are substantial differences between

median search costs depending on different demographics. Younger buyers have on average lower

median search costs, apart from low-income first-time buyers. This is true both in rural and urban

areas. This shows that younger households are on average more financially literate. Secondly, on

10Estimates from a model takes a richer form than an interactive 4-way effect in the price distribution, which allows

for another level of interaction with either a borrower’s or lender’s characteristic, begin to become unstable with

respect to the initial value used in the optimization procedure.
11For results that are stable, qualitative results on search cost and firm’s cost distributions are the largely the same

whether search cost distribution can vary with time or not. Here, we illustrate exclusion of time effects does not go to

waste as it benefits identification of the search cost distribution.
12The multi-way interactive effects show many rationalizable patterns, but these are hard to succinctly summarize

as there is sometimes non-uniformity in signs and directions with respect to a particular combination of interacting

characcteristics. The latter point is not surprising given the complexity of what goes into a mortgage decision and the

richness of our dataset, and our model has 160 parameters for the mean and precision apiece. The estimates of the

price distribution are available upon request.
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average, it is low income households which are affected by the information frictions to the largest

extent. The differences between first and subsequent time buyers are also intuitive —first-time mort-

gagors have typically higher search costs and their distributions exhibit more dispersion. Generally,

for all demographic groups, search costs amount to about 7-16% of monthly interest payments. Those

numbers are an important benchmark for both policy makers who might want to improve information

provision to disadvantaged households, as well as intermediaries in the market who need to know the

value of information to optimally set their fee structures. Finally, we comment that while we notice

some discrepancies between the results in Table 2 and the corresponding table in MR, the relative

magnitudes of search cost all fall within a similar range, and the main qualitative conclusions remain

unchanged despite differences in our use of parametric assumptions.

zb− comb 1st quartile 2nd quartile 3rd quartile % Median

Age Inc FTB Urb

L L Y R 48.5 (0.3) 51.5 (0.3) 53.1 (0.3) 13.4%

H L Y R 39.2 (1.5) 45.9 (1.5) 54.8 (1.5) 12.3%

L H Y R 23.8 (0.7) 28.2 (1.2) 34.8 (1.9) 7.7%

H H Y R 43.5 (14.9) 45.6 (18.8) 54.6 (23.2) 13.2%

L L N R 29.6 (1.0) 35.9 (1.0) 45.3 (1.1) 10.9%

H L N R 34.7 (3.2) 45.8 (2.8) 52.7 (2.8) 14.2%

L H N R 32.5 (1.7) 35.8 (1.9) 37.4 (2.5) 11.5%

H H N R 41.4 (9.4) 48.9 (0.4) 51.9 (0.4) 16.0%

L L Y U 41.6 (15.9) 50.1 (4.7) 59.4 (5.2) 12.9%

H L Y U 35.4 (18.5) 46.7 (21.7) 114.8 (25.6) 12.3%

L H Y U 20.7 (14.5) 25.7 (20.6) 30.7 (25.7) 6.9%

H H Y U 30.5 (2.4) 38.9 (2.5) 46.0 (3.1) 11.0%

L L N U 21.7 (2.4) 27.0 (2.7) 32.4 (3.1) 8.1%

H L N U 25.0 (0.4) 32.4 (0.3) 35.5 (0.4) 10.0%

L H N U 23.8 (0.2) 27.6 (0.3) 29.0 (0.3) 9.0%

H H N U 18.9 (0.6) 34.9 (0.7) 37.7 (0.7) 11.6%

Table 2. Summary of quantiles search cost distributions.

On the supply-side, we estimate distributions of marginal costs of providing loans of different

types and evaluate the extent of banks’market power by analysing distributions of price-cost margins.

Notable observations from our estimates are in line with what is known about the mortgage market

- e.g. that riskier loans (i.e. those with longer crediting term and higher LTV ratio) are costlier to

supply. Figure 5 illustrates the latter by showing how the cost distribution generally shifts along the
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LTV dimension while Figure 6 shows that, everything else fixed, loans with 2-year initial period of

fixed interest rate are cheaper to supply than those with 3- and 5-year guaranteed interest rate.

For the most standard loan in the data (interest rate fixed for 2 years, crediting term between

20 and 25 years and total value just above the median), we plot the estimated beta distributions

to show that lender’s cost of providing that loan can be up to twice as much if LTV exceeds 85%

compared to one with LTV in the range of 70-80%. The most risky loans, where the downpayment

is below 10% are even more costly. We also observe that, generally, the distributions of the firms’

costs appear to be higher in 2017 relative to 2016.

We end this illustration with a plot of the distribution of percentage markups implied by the

model estimates in Figure 7. Similarly to the results obtained using a fully nonparametric approach

and a larger sample of lenders and loans in MR, the distribution is right-skewed with mean just
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above 10%.

While our goal here was to show that the model can produce meaningful estimates and can

be used to analyze competition and quantify the extent of information frictions in a real-world,

important industry, we note that the scope for its applications is much broader. In our other work

(MR), we explain how banks’market power is affected by the presence of intermediaries and look at

changes in markups in a counterfactual without brokers. Equipped with the estimates of all model

primitives, particularly the estimates of H(·) and G(·), the model can also be used to answer other
policy-relevant questions, such as effects of bank mergers, introduction of LTV caps etc.13

8 Some Discussions

Our paper focuses on the theoretical and methodological aspects of identifying and estimating a search

model using aggregate data: market shares and market-level prices. The exposition of our theoretical

models assumes each firm sets the same price to all consumers. The posted price framework, which

is common in applications with retail data (e.g., online books (Hong and Shum (2006)), computer

memory chips (Moraga-Gonzalez and Wildenbeest (2008)), is consistent with this assumption. Our

estimation strategy is amenable to applications where the same firm could offer consumers different

prices for the same (or similar) products/services. To proceed, one would need to construct aggregate

price, P agg
im , from individualized prices and impose the following restriction,

E [Yim|P agg
im ] =

I∑
k=1

qk
k

I
(1− F (P agg

im ))k−1 . (29)

13The main counterfactual study in MR was to calculate the value of information provided by mortgage brokers,

i.e. the change in consumer welfare based on new simulated equilibrium prices when intermediaries are removed from

the market. This application is related to the counterfactual study in Salz, who analyzed value of the brokers in New

York City’s trade-waste market.
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We illustrated this in our application, where we used the median price as the representative market

price based on the argument by Benetton (2021) that the UK mortgage market is well-represented

by posted prices. Statistically, (29) can be thought of as a parametric restriction since it may not be

implied by the model. Nevertheless, our proposal is appealing for two practical reasons. First, (29)

can be interpreted as an approximation to the relation between market shares and representative

prices analogous to Assumption D(ii). Second, our estimation strategy is very easy to implement

in a variety of contexts. It can be applied to the pure search model, with or without product

differentiation, as well as a model with an intermediary. Moreoever, computationally, estimation is

based on our constructive identification strategy that is transparent and straightforward to apply.

The diffi culty in estimating a search model like ours directly with individualized prices is not

unique to our approach. It is also apparent in Salz (2020), even in the special case when H(·) can
be treated as known. More specifically, with the presence of intermediary aside, while he showed

the search cost distribution is nonparametric identified, his identification strategy is not constructive

in the sense there are no direct estimators for the model primitives. For estimation, Salz took a

full-solution approach14 with simulated method of moments based on matching moments of observed

and theoretical prices; some parametric assumptions on the cost distribution and moment selections

are also necessary for feasible estimation. We note there are other ways to estimate the model. For

example, one could use equation (13) in Appendix B.2.1 in Salz (2020) that resembles the condition

we have on market shares and prices (cf. (29)). However, exploiting that would require one to

numerically solve differential equations (see page 60 in Salz (2020)) repeatedly, which may be a

formidable computational task in real applications.

The point of the discussion above is to elucidate the challenge in estimating a search model

nonparametrically when prices are individualized. This is perhaps not surprising. From a statistical

standpoint, working with individualized prices means we have to account for a complicated missing

data mechanism since only the purchased price is observed for each consumer amongst an unknown

number of other prices. Economically, observing different prices offered by the same firm could imply

that products may not be homogeneous, which brings us into the realms of product differentiation.

Then, in building a structural econometric model, it places us somewhere between a very simple

posted price framework with no supply-side heterogeneity like Hong and Shum (2006) and, at the

other extreme, a sophisticated model of differentiated product search in Moraga-González, Sándor,

14When the empirical model admits multiple equilibria, a full-solution estimation method must account for multiple

equilibria explicitly. This can substantially add to the computational burden.In contrast, our estimation procedure

remains valid without change for the same reason highlighted by the two-step estimators in the literature on dynamic

game estimation. We refer the reader to the Introduction of Srisuma (2013) for a discussion on the advantages of

two-step estimators.
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and Wildenbeest (2023) that requires a richer data environment for identification than price and

market shares alone (e.g., needs data on individual search behaviour). Therefore, the parametric

approach we have shown provides pragmatic ways to study search markets where products are not

too heterogeneous with relatively modest requirements on data (i.e., prices and shares). Nevertheless,

our model still paves the way to answer interesting counterfactual questions. E.g., Salz (2020) and

Mýsliwski and Rostom (2022) study the value of intermediaries in their respective applications. Other

possible applications include quantification of effects on market price caused by changes to search

costs (in the same vein as Choi, Dai, and Kim (2018), Moraga-González, Sándor, and Wildenbeest

(2023)) or to production costs or market structure where the role of heterogeneous firms can be

emphasized.

In the introduction, we gave intuitive and empirically motivated scenarios for when one may favor

the incomplete information model over the complete information one. Another way to distinguish

between the models is through statistical testing. Since we are not aware of an existing test for this

purpose, an interesting direction for research would be to establish testable restrictions for each model

and develop tests for them. One way to proceed in this direction could be along the lines of Grieco

(2014), who showed, in the context of an entry game, how complete and incomplete information

models can provide different testable restrictions. Analogous to his approach, common and private

costs can also be present simultaneously in a search model like ours.

We end the paper by discussing possible extensions to our work. One modeling extension we can

consider is for firms to have different probabilities of being found by consumers. Our results readily

extend to this case if we assume an equilibrium exists where the optimal pricing strategies of firms are

strictly increasing and share the same support. We are unable to prove such an equilibrium exists,

but we are optimistic that it does based on positive results from the literature on asymmetric first-

price auctions15. The challenge stems from the fact that the (quasi-)inverse of the optimal pricing

strategies are solutions to a system of nonlinear differential equations that are diffi cult to analyze.16

On the econometrics, our nonparametric identification strategy readily extends to include ob-

served heterogeneity. All the assumptions made in Sections 2 to 5 can be written to condition on

covariates (that can also include the number of firms). As in the auction model of Guerre et al.

(2000), however, the nonparametric rate of convergence for the conditional distributions with contin-

uous variables will be slower than that of the unconditional ones. In this case, we expect the quantile

15Some existence results do exist, e.g. see Lebrun (1999) and Maskin and Riley (2000). Furthermore, a common

support for the optimal bids in the first-price context is also known to hold (e.g. see Athey and Haile (2007)).
16It is not trivial even to show the existence of such equilibrium numerically. For instance, in a related problem,

numerical studies of the equilibrium in asymmetric auctions are a current topic of research - e.g. see the discussion in

Fibich and Gavish (2011).
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regression approach of Gimenes and Guerre (2020), recently developed to mitigate the dimension-

ality issue in the auction literature, to be applicable to our search model. Finally, we do not deal

with inference in this paper. Inference on the demand side parameters is relatively straightforward,

e.g. see Sanches, Silva, and Srisuma (2018). Establishing the asymptotic distribution and valid-

ity for the bootstrap of ĥ (·) and h̃ (·) is more challenging. We conjecture this can be obtained by
suitably adapting the arguments in a recent article by Ma, Marmer, and Schneyerov (2019), where

they derived the asymptotic variance for the GPV’s estimator as well as showing inference using the

bootstrap is valid.

Appendix

This Appendix provides the proofs of lemmas and theorems. We omit the proofs of Lemmas 1, 2 and

10, Theorem 1, and all of the propositions. These are either immediate consequences of what have

discussed or proven in the main text. We also omit the proofs of Lemma 6 and Theorem 2 because

they are very similar to the proofs of Lemma 9 and Theorem 3 respectively.

Proof of Lemma 3. From (9), we have E [Yim|Xim] = X>imq. Multiply both sides by Xim and take

expectation yields E [XimYim] = E
[
XimX

>
im

]
q. Since E

[
XimX

>
im

]
has full rank, the proof follows

from solving for q. �

Proof of Lemma 4. By inspecting (4) and (5), β (·) is strictly increasing and continuously differ-
entiable on [R,R) therefore β−1 (·) (= ξ (·)) exists. Using a change of variables argument, we have
f (p) =

h(β−1(p))
β′(β−1(p))

. From (5), we can write f (p) = ψ
(
β−1 (p)

)
, where ψ (·) is a real-value function

defined on [R,R) such that

ψ (r) =

(
I∑

k=1

qkk (1−H (r))k−1
)2

(
I∑

k=2

qkk (k − 1) (1−H (r))k−2
)(

I∑
k=1

qkk
∫ R
s=r

(1−H (s))k−1 ds

) . (30)

Part (a) follows from infp∈[P ,P ] f (p) = infr∈[R,R] ψ (r) ≥ q21(
I∑
k=2

qkk(k−1)
)(

R
I∑
k=1

qkk

) > 0. Part (b) follows

from limp→P f(p) = limr→R ψ (r) = ∞. To obtain the expression in part (c), we know that β (r) is

the maximizer of the following function,

Λ (p, r) = (p− r)
I∑

k=1

qk
k

I
(1−H (ξ (p)))k−1 ,
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for any r. β (r) is also the zero to ∂
∂p

Λ (p, r), where

∂

∂p
Λ (p, r) =

I∑
k=1

qk
k

I
(1−H (ξ (p)))k−1

− (p− r) ξ′ (p)h (ξ (p))
I∑

k=2

qk
k (k − 1)

I
(1−H (ξ (p)))k−2 .

Note that the cdf and pdf of Pim and Rim are related through F (p) = H (ξ (p)) and f (p) =

ξ′ (p)h (ξ (p)) respectively. Substitute these in and impose the first-order condition leads to,

I∑
k=1

qkk (1− F (p))k−1 = (p− ξ (p)) f (p)
I∑

k=2

qkk (k − 1) (1− F (p))k−2 .

Rearranging the relation above gives (10).�

Proof of Lemma 5. From (5), we see that β−1 (·) is τ + 1 times continuously differentiable on

[P , P ) as β′ (·) > 0 on [R,R). The result then follows from the fact that ψ (r), see (30), is a smooth

functional of H (·) for all r ∈ [R,R). �

Proof of Lemma 7. Using the strict monotonicity property of β (·), for any p ∈
[
P , P

]
there exists

a unique r ∈
[
R,R

]
such that β (r) = p

(
P − p

)
f(p) = β′ (r̃)

(
R− r

)
f(β (r)) =

(
R− r

)
h (r̃)

f(β (r))

f(β (r̃))
,

for some r̃ ∈
(
r, R

)
. The first equality comes from replacing

(
p, P

)
with

(
β (r) , β

(
R
))
and, since

β′ (·) is continuously differentiable, applying the mean value theorem. The second equality uses the
relation f (β (r̃)) = h(r̃)

β′(r̃) , which holds through a change of variables argument. It can be verified

from (30) that limr→R
(
R− r

)
f(β (r)) = limr̃→R

(
R− r̃

)
f(β (r̃)) is bounded away from zero and

infinity, therefore limp→P
(
P − p

)
f(p) = limr̃→R

(
R− r̃

)
h (r̃). Since h (·) is bounded, it follows that

limp→P
(
P − p

)
f(p) exists and is equal to 0.�

Proof of Lemma 8. For part (a), given that f †
(
p†
)

= exp
(
−p†

)
f
(
P − exp

(
−p†

))
for all p† ∈

[− ln
(
P − P

)
,∞), boundedness follows if we can show p 7→

(
P − p

)
f (p) is continuous on [P , P )

and limp→P
(
P − p

)
f (p) exists. The former is a consequence of Lemma 5 and the latter follows from

Lemma 7. For part (b), it suffi ces to show f † (·) has the same degree of smoothness as f (·). This
holds for the same reason as Corollary 2 of Srisuma (2023).�
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Proof of Lemma 9. From (18) when R̃im <∞ we can write,

R̃im −Rim = I1 (Pim) + I2 (Pim) , where

I1 (Pim) = Ψ
(
q̂, f̃ (Pim) , F̂ (Pim)

)
−Ψ

(
q, f̃ (Pim) , F (Pim)

)
,

I2 (Pim) = Ψ
(
q, f̃ (Pim) , F (Pim)

)
−Ψ (q, f (Pim) , F (Pim)) ,

where Ψ (q, f (Pim) , F (Pim)) =
∑I
k=1 qkk(1−F (Pim))

k−1

f(Pim)
∑I
k=2 qkk(k−1)(1−F (Pim))

k−2 so that Ψ
(
q̂, f̃ (Pim) , F̂ (Pim)

)
and

Ψ
(
q, f̃ (Pim) , F (Pim)

)
are estimated counterparts of Ψ (q, f (Pim) , F (Pim)) where some or all com-

ponents of (q, f (Pim) , F (Pim)) are replaced by
(
q̂, f̃ (Pim) , F̂ (Pim)

)
accordingly. By Lemma 4(a),

we know infp∈[P+δM ,P−δM ] f̃ (p) > c0 for some c0 > 0 with probability approaching one as M → ∞.
Given the convergence rates in Propositions 3 and 4, it is straightforward to verify that the partial

derivatives of Ψ
(
q, f̃ (Pim) , F (Pim)

)
with respect to its first and third arguments are also almost

surely uniformly bounded. Therefore by the mean value theorem it follows that

|I1 (Pim)| = Op

‖q̂− q‖+ sup
p∈[P+δM ,P−δM ]

∣∣∣F̂ (p)− F (p)
∣∣∣


So that |I1 (Pim)| = o(ηM) almost surely. For I2, we can write

I2 (Pim) = −
(
f̃ (Pim)− f (Pim)

f̃ (Pim) f (Pim)

) ∑I
k=1 qkk (1− F (Pim))k−1∑I

k=2 qkk (k − 1) (1− F (Pim))k−2
,

so that

|I2 (Pim)| = O

 sup
p∈[P+δM ,P−δM ]

∣∣∣f̃ (p)− f (p)
∣∣∣
 a.s .

The upper bounds for |I1 (Pim)| and |I2 (Pim)| are independent of Pim. The proof then follows from
applying the convergence rates of the quantities in |I1 (Pim)| and |I2 (Pim)| as stated in Proposition
4.�

Proof of Theorem 3. From (19),

h̃ (r)− h (r) = J1 (r) + J2 (r) + J3 (r) , where

J1 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

(
K

(
R̃im − r
bh,M

)
−K

(
Rim − r
bh,M

))
1
[
R̃im <∞

]
,

J2 (r) = − 1

MIbh,M

M∑
m=1

I∑
i=1

K

(
Rim − r
bh,M

)
1
[
R̃im =∞

]
,

J3 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K

(
Rim − r
bh,M

)
− h (r) .
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For J1:

J1 (r) =
1

MIbh,M

M∑
m=1

I∑
i=1

K ′(Rim − r
bh,M

)(
R̃im −Rim

bh,M

)
+

1

2
K ′′
(
Rim − r
bh,M

)(
R̃im −Rim

bh,M

)21 [R̃im <∞
]
,

where Rim is some mid-point between R̃im and Rim. Then we have

|J1 (r)| ≤
supi,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣
bh,M

1

MIbh,M

M∑
m=1

I∑
i=1

∣∣∣∣K ′(Rim − r
bh,M

)∣∣∣∣
+

(
supi,m s.t. R̃im<∞

∣∣∣R̃im −Rim

∣∣∣)
b3M

2

1

2MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
sup
v∈R

K ′′ (v) .

It can be shown using standard methods for kernel estimators that

sup
r∈[R+ςM ,R−ςM ]

∣∣∣∣∣ 1

MIbh,M

M∑
m=1

I∑
i=1

∣∣∣∣K ′(Rim − r
bh,M

)∣∣∣∣− h (r)

∫
|K ′ (v)| dv

∣∣∣∣∣ = o (1) ,

where supr∈[R,R] h (r)
∫
|K ′ (v)| dv is finite. Since

[
R̃im <∞

]
is an almost sure set asymptotically,

1
MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
converges to 1 almost surely and,

1

2MI

M∑
m=1

I∑
i=1

1
[
R̃im <∞

]
sup
v∈R

K ′′ (v) =
1

2
sup
v∈R

K ′′ (v) + o (1) .

It follows that

sup
r∈[R+ςM ,R−ςM ]

|J1 (r)| ≤ O

(
ηM
bh,M

+
η2M
b3M

)
.

When ηM = O (b2M) it follows that,

sup
r∈[R+ςM ,R−ςM ]

|J1 (r)| ≤ O

(
ηM
bh,M

)
a.s .

For J2, since
[
R̃im =∞

]
is a null set asymptotically and 1

[
R̃im =∞

]
= o (υM), by choosing

υM = o
(

ηM
bh,M

)
,

sup
r∈[R+ςM ,R−ςM ]

|J2 (r)| ≤ o (υM) a.s .

For J3, it is a standard result in kernel estimation that

sup
r∈[R+ςM ,R−ςM ]

|J3 (r)| = O
(
bτh,M + η∗M

)
a.s .
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The bias component in J3 is of the same order as
η∗M
bh,M

= o
(

ηM
bh,M

)
and the stochastic part is also

o
(

ηM
bh,M

)
. �

Proof of Theorem 4. It suffi ces to provide the best responses of consumers and firms analogous

to those in Lemmas 1 and 2 respectively, and give the definition of a quasi-symmetric equilibrium.

These results are stated in Lemmas 12 and 13 below. In particular, Lemma 11 replaces {∆k}I−1k=1

in equation (3) by {Υk}I−1k=1 and Lemma 12 use the distribution of random utilities based on (22)

instead of prices.

Lemma 12. Suppose Assumption D’holds. Then the consumer’s best response is a map σD : L →
SI−1 such that for any L in L,

σD (L) =

{
1−G (Υk (L))

G (Υk−1 (L))−G (Υk (L))

for k = 1

for k > 1
. (31)

Lemma 13. Suppose Assumption D’holds. Then the firm’s best response is a map σS : SI−1 → L
such that for any q in SI−1, σS (q) is the cdf of µ (x (R0i) ;q) where µ (x (·) ;q) is defined as in (22).

We can now define a quasi-symmetric equilibrium as follows.

Definition 2 . A pair (q, L) ∈ SI−1 × L is a quasi-symmetric equilibrium if q = σD (L) and

L = σS (q), where σS (·) and σS (·) are defined in Lemmas 10 and 11 respectively.

The proof of the theorem follows immediately from here. �
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